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1 Introduction

1.1 Heterogeneous networks sharing the 2.4GHz ISM Band

¢ 802.11x Networks (WLAN) ¢ Wireless Sensor Networks (WSN)
— Highly common — Low 'T'x-Power
— Radio Interface for powerful devices — Low Detection Range
— Higher Tx- Power & Range — CPU constrained
— High Detection Sensitivity — Battery-powered
WSN node

WLAN user

WLAN & WSN Coexistence:
e “blind” WLAN terminals do not detect ongoing WSN transmissions
e The mutual interference is asymmetric because of the different power levels

— WSN performance degrades significantly; WLAN performance is hardly affected

1.2 The WLAN- WSN CoeX1stence Problem
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WSN packets are usually too long to fit within the short WLAN idle periods

— Cognitive access mechanisms are essential
— The underlying WLAN channel usage pattern should be identified
— WSN transmission schemes should adapt to the undelying WLAN channel usage patterns

1.3 Aim of this work

e WLAN Channel Usage Modeling
e Validation of an Analytic WLAN Usage Model

2 WLAN Channel Occupancy — Modeling and
Estimation

e WLAN spectrum activity prediction — Derivation of a stochastic spatio-temporal model
for WLAN active & idle channel periods

Global (Fully-observable) Activity
Model: 2-state semi-Markovian system |1] -
Models all activity in a single WLAN-AP area  falt) -

e Active time (traffic-specific):
A ~ U(Tins Tmax), fa(t) = :

Tmax — Tmin
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fi(t)

e [dle time (mixed distribution, with heavy-
tail):
fr(t) = pfF N (@) + (L= p)f750)
— Pw(t): Almost uniform short WLAN
back-off periods
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Locally Observable Activity Model [2] A
e Limited WSN sensing range — Clear Chan- A
nel Assessment Zone (CCA) non-observable A
e Partially observed WLAN load (pccp €
0,1]) — 3-state semi-Markovian model A
@

Correlation of local views decreases with sen-
sor distance
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e Parameter Estimation

— Parameterizing the analytic functions, f4(t), f7(¢), f7(t) based on samples obtained through
channel sensing

x+ Maximum Likelihood Estimation for f4(t), f7(¢) |Global View]
) |

« Laplace Transform-based algorithm for f7(f) [2] [Local View]

3 WLAN Occupancy

3.1 Motivation

option for the WLAN channel usage

e A "Campus-WLAN" case-study |3]:
campus-wide WLAN

x Session- and Flow-level modeling

Session Interarrivals

e Extensive NS-miracle simulation
study [4]

— Idle sample series generation

— f1(t) : (&, 0,p) estimation apply-
ing MLE |2]

— D-value-based evaluation of fitting
quality,
D = supy, |F(tn) — Fre(tn)], (be-
tween the estimated and empirical
idle period densities)

3.4 Evaluation Results
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4 Conclusions

x Flow characterization and packet-

Model Validation

e Investigate whether and when the proposed semi-Markovian system is a realistic modeling

3.2 Multi-Layer WLAN Traffic Model

e Statistical Modeling

— A measurement-based traffic workload model in a  —Session Arrivals: Time-variant

Poisson Process

— Multi-layer modeling of user behavior — Flow Inter-arrival times: Log-

normal Process
level modeling — Flow Number/Sizes; Bi-Pareto

Packet Interarrivals
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3.3 Simulation Methodology
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Campus WLAN Model [3] NS implementation

.+ o One simulation run
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e Agoregate Statistics

— A low D-value indi-
cates high fitting qual-
1ty

— D-value increases with

network load (percent-
age of time WLAN

e The cases of high channel load are, however, rare,
based on the given traffic workload model

e The model sufficiently captures the statistics of the
WLAN idle periods
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e WLAN channel occupancy prediction is an essential mechanism for improving the communica-
tion performance of co-existing low-powered WSN networks

e The proposed semi-Markovian model
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