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Abstract—Efficient communication in the crowded ISM band
requires the communication networks to be aware of the network-
ing environment and to control their communication protocols
accordingly. In this paper we address the issue of efficient WSN
communication under WLAN interference. We propose analytic
models to describe the WLAN idle time distributions as observed
by the WSN nodes, together with efficient methods for parameter
estimation. We evaluate how the spectrum sensing capability of
the sensors affects the performance of the idle period distribution
estimation and conclude that the proposed solutions are accurate
enough to support cognitive WSNs.

I. INTRODUCTION

The spectrum of the open Industrial, Scientific and Medical
(ISM) band is gradually becoming a scarce resource, due
to the growing proliferation of wireless devices [1]. In this
environment the network protocols, often optimized for the
standalone network, do not anymore provide the required
communication efficiency or performance guarantees. In this
paper we focus on the challenge of efficient WSN communi-
cation when a WLAN operates in the same area. As WLAN
carrier sensing is designed to detect WLAN signals, it is
blind towards the low power, narrow band WSN transmissions.
As a consequence, the WLAN causes harmful interference
in the WSN, while itself remains unaffected from the WSN
interferers. The WSN nodes can avoid WLAN interference
and thus costly packet retransmissions only if they are armed
with cognitive capabilities [2], i.e they are aware of the
WLAN behavior and optimize their transmission parameters
and communication protocols accordingly.

Previous work in the area of cognitive WSNs includes
proposals for novel carrier sensing and medium access control,
and the characterization of the channel usage in WLAN cells.
In [3] the interfering technology is identified based on spectral
signature. In the case of WLAN interferers, the sensors force
the WLAN to back off by sending short, high power jamming
signals. The POMDP framework [4] introduces the concept
of partial channel knowledge and proposes optimal sensing
and channel access strategies considering a Markovian channel
occupancy model. A Markovian model, however, may lead
to suboptimal WSN operation, and therefore several works
deal with a more accurate channel characterization. In [5]
the WLAN output buffers are modeled as M/G/1 queues,
resulting in sub-geometric idle period distribution. In [6] an

hyper-exponential distribution is fitted to the empirical idle
period distribution derived by traffic traces from an area with
heterogeneous wireless devices. In [7] the idle periods are
modeled with a Pareto distribution, and packet lengths are
optimized accordingly to control the collision probability. In
our work we follow the model of [8][9], where a mixture
distribution is proposed to model the idle periods, capturing
the two basic sources of inactivity, the short, almost uniformly
distributed contention windows and the long, heavy-tailed
white space periods, when the WLAN users are inactive.

Our goal is to evaluate whether the sensor nodes are capable
of estimating the channel occupancy model parameters by
performing continuous sensing for limited time intervals. We
enhance the model of [8] with a Local View component to take
the limited detection range of the sensor nodes into account,
and propose computationally efficient ways to estimate the
model parameters from idle and active period measurements,
using likelihood maximization and neural networks based
learning algorithms.

The rest of the paper is organized as follows. Section
II defines the considered networking scenario along with
the WLAN channel activity models. In Section III we pro-
pose estimation algorithms based on Laplace Transforms and
Neural Networks, while in Sections IV and V we evaluate
their accuracy based on numerical and simulation results. We
conclude the paper in Section VI.

II. SYSTEM MODEL

A. Networking Scenario

We consider an IEEE 802.15.4 compliant WSN operating
in the transmission area of a IEEE 802.11 WLAN. The
transmission power of the WLAN terminals is orders of
magnitude higher than that of the coexisting WSN, and the
WLAN terminals are blind towards the WSN transmissions.
The protocol stack of the energy constrained WSN is enhanced
by cognitive functionality to optimize the WSN operation. The
cognitive control consists of two phases.

First, the sensors perform continuous sensing, and collect
samples of busy and idle WLAN period lengths. Based on
the collected data, they estimate the parameters of the WLAN
channel occupancy distributions. The sensing is based on the
usual Clear Channel Assessment (CCA) process with energy
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Fig. 1: The Global View model with all channel states and the
reduced two-state semi-Markovian model.

detection, resulting in a limited sensing range. The sensing and
estimation process is repeated with low frequency to follow
the traffic intensity changes in the WLAN [10].

Second, based on the results of the estimation process the
sensors optimize their transmission parameters to fulfill some
performance requirement, for example, control the probability
of packet loss due to WLAN interference [7], or minimize
energy consumption [11].

This paper deals with the first phase and evaluates the
achievable parameter estimation accuracy and the related sens-
ing cost, leaving the transmission optimization for future work.

B. WLAN spectrum occupancy modeling

We consider the semi-Markovian system of active and idle
periods to model the stochastic WLAN channel occupancy, as
proposed in [8]. We call this model as the Global View, since
it takes all WLAN activity into account. Figure 1 depicts all
the states of the WLAN channel and their merging into a two-
state semi-Markovian chain. The states of Data, SIFS and ACK
transmission are grouped together into a single Active state,
and the states that represent the WLAN Contention Window
period (CW) and the WLAN White Space (WS) due to user
inactivity are merged into a single Idle state.

To predict how long the system remains in either state,
we need to derive the distributions fA(t) and fI(t) for the
sojourn times in the Active and Idle state, respectively. As
shown in [8], the uniform distribution sufficiently models
the active and the CW periods, with ranges [αON, βON] and
[0, αBK], αBK ≤ αON, respectively. The WS periods, however,
exhibit a heavy-tailed behavior that is well approximated by
a zero-location generalized Pareto distribution with parame-
ters (ξ, σ). The idle period distribution, fI(t), is therefore
represented by a mixture distribution with a weight p [9]:
fI(t) , p · fCW

I (t) + (1 − p) · fWS
I (t), where the fCW

I (t)
is the uniform distribution in the back-off range and fWS

I (t)
is a generalized Pareto distribution of the white spaces and
consequently fI(t) is:

fI(t) ,
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Fig. 2: The 3-state semi-Markovian chain and its 2-state
equivalent for the Local View channel activity modeling.

We extend the above Global View model and define the Lo-
cal View, that describes the WLAN channel occupancy as seen
by an individual sensor with limited sensing range. Assuming
that consecutive WLAN transmissions are not correlated, we
introduce a 3-state semi-Markovian system (Figure 2), distin-
guishing between detected, and un-detected WLAN activity,
that occurs with probability pCCA and (1−pCCA), respectively.
To model the observable sojourn time distributions fÃ(t) and
fĨ(t) we define the 2-state Local View model by merging the
states at which the sensor detects an idle channel. It holds that
fÃ(t) = fA(t), but fĨ(t) 6= fI(t), ∀pCCA < 1.

Our objective is to estimate the parameters of fA(t) and
fI(t) and the observable load, pCCA, from a set of samples of
fÃ(t) and fĨ(t) obtained through channel sensing.

III. LOCAL VIEW PARAMETER ESTIMATION

As the active period distribution, fÃ(t), is uniform, its
parameters αON and βON are estimated by the lowest and
the largest measured active period according to Maximum
Likelihood Estimation (MLE). For the rest of the paper we
assume that the active distribution is estimated perfectly. The
parameter estimation of the Global View idle period, fI(t),
is addressed in [8]. Assuming that the maximum back-off
time, αBK, is given by the WLAN specification, the Pareto
parameters ξ and σ can be derived with MLE, by discarding
all observations in the range of [0, αBK][12], while the weight
p can be derived through Moment Evaluation (ME).

Let us consider the Local View model. An idle channel
period observed by an arbitrary sensor consists of a random
number of WLAN “cycles”, that is, consecutive idle and
un-detected active periods, followed by an additional idle
period. The locally observable idle period distribution, fĨ(t),
is, therefore, a function of the idle and active time distributions
fI(t) and fA(t), and of the observable load, pCCA, and can not
be expressed in a closed form, even if fA(t) is known. The lack
of a closed form expression prevents us from applying MLE
directly on the sample series of observed idle periods, and an
alternative solution is needed for the parameter estimation.

A. Parameter Estimation in the Laplace Domain

Contrary to the density function, the Laplace Transform
(LT) of the locally observed idle period distribution, f∗

Ĩ
(s),

can be derived in a closed-form, as follows. The LT of the
WLAN cycle is f∗C (s) = f∗I (s)f

∗
A(s), where f∗A(s) is the

LT of the uniformly distributed active periods and f∗I (s) is
the LT of the linear combination of the uniformly distributed
CW and the Pareto distributed WS periods. As in the Local
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View model the number of consecutive cycles has geometric
distribution with parameter pCCA, the LT of the sum of the
WLAN cycles is f∗C̃ (s) = PK{f∗C (s)}, with Zeta transform
PK(z) = pCCA/(1 − (1 − pCCA)z). Since the observable
idle period includes an additional idle time before a detected
WLAN activity period, we finally have:

f∗
Ĩ
(s) = f∗I (s)

pCCA

1− (1− pCCA)f∗I (s)f
∗
A(s)

. (1)

We derive the empirical LT of the observable idle time
distribution, f∗

Ĩe
(s) directly from the N measured idle period

samples, (t1, ..., tN ):

f∗
Ĩe
(s;N) =

1

N

N∑
i=1

e−sti . (2)

To estimate the Local View model parameters we aim at min-
imizing the Mean Square Error (MSE) between the empirical
and the analytic LT in (1), evaluated on a finite discrete subset
of the s-domain, S = {s1, s2, ...sS}:
(ξ̂, σ̂, p̂, p̂CCA) =

argmin 1
S

∑S
k=1(f

∗
Ĩe
(sk;N)− f∗

Ĩ
(sk; ξ, σ, p, pCCA))

2.
(3)

In addition to applying exhaustive search, we derive
(ξ̂, σ̂, p̂, p̂CCA) in (3) by adapting the discrete space global
iterative search method proposed in [13]. The 4-dimensional
search space is reduced by using ME to express pCCA from the
rest of the parameters. The iterative process runs parallel to the
channel sensing. In each iteration nm new idle period samples
are integrated, and f∗

Ĩe
(s;N) is recalculated according to (2).

We define the discrete search space, K = {K1, ...,KK}, where
{ξi, σi, pi} is the set of parameters for the state Ki. The search
process moves from state to state randomly, until a stopping
condition is triggered, as given by Algorithm 1. The algorithm
stops, if its state has been unchanged for πmax iterations, or
when the sensing is completed and all the N samples are
integrated. {ξ̂, σ̂, p̂} is then given by the most visited state,
denoted as K∗. We denote by Qm(Kj) the number of times
state Kj has been visited until the m-th iteration, and by
πm the number of successive iterations the algorithm state
remained unchanged after iteration m.

Algorithm 1. Initialization: Select a starting state K0 =
(ξ0, σ0, p0) ∈ K randomly. Let π0 = 1, Q0(K0) = 1,
Q0(Kj) = 0,∀Kj ∈ K.
Iteration m ≥ 1: Choose a state Jm = {ξm, σm, pm} ∈
K\{Km−1} with probability 1

K−1 .
Integrate nm new samples of the idle series.
Let f∗

Ĩe
(s;Nm) = 1/Nm

∑
k e
−stk , s ∈ S, Nm =

∑m
l=1 nl.

Let MSEm = 1
S

∑S
k=1(f

∗
Ĩe
(sk;Nm)− f∗

Ĩ
(sk;Jm))2.

If MSEm < MSEm−1, Km = Jm and πm = 1, otherwise
Km = Km−1 and πm = πm−1 + 1. Let Qm(Km) =
Qm−1(Km) + 1. If πm ≥ πmax or Nm = N , Stop.
Output: Let K∗ = argmaxKj∈KQm(Kj).

The computational complexity of each step is linear with
|S|, while the required memory is proportional to the size
of K. The algorithm converges almost always to the optimum
state, as we show in [14]. We have to note, however, that MSE
minimization in the Laplace domain does not necessarily lead

to likelihood maximization in the time domain, which may
decrease the accuracy of the parameter estimation.

B. Parameter Estimation with Neural Network
The Neural Network (NN) is a computational paradigm for

artificial intelligence, modeled after the human brain and ner-
vous system. We implement an NN to estimate the parameters
of fĨ(t) in time domain, without knowing its closed form.

An NN consists of a set of connected neurons organized
in layers, where each neuron forwards to the next layer the
linear combination of the values received from the previous
layer or layers. The first – input – layer receives values from
outside the network, the last – output – layer returns values
of the output parameters of interest, and the layers in between
remain hidden [15]. To use the NN for parameter estimation,
we first train it with a set of training vectors with known
input and output values, setting the weights of the connections
between the neurons. Once the training phase is completed,
the parameterized NN can be deployed on the sensors using a
very limited memory and can derive the outputs for new input
vectors in linear time.

We consider an NN with a single hidden layer (Figure 3),
where the number of hidden neurons is half of the number
of the input ones. The output layer consists of the four-
ordered vector of estimated parameters, (ξ̂, σ̂, p̂, p̂CCA). When
defining the input layer our goal is to introduce a structure
that is decoupled from the number of measured idle time
samples. Therefore we build the empirical PDF of the N
measured idle period samples, (t1, ..., tN ), and choose a set of
X = {x1, . . . , xX} points as the input of the NN. We sample
the empirical PDF according to a logarithmic scale so as to
capture the distinctive part of the Pareto WS distribution. To
increase estimation accuracy, the input layer receives also the
idle time sample mean (µ) and variance (σ2), as well as the
fA(t) parameters obtained via MLE. The CW parameter αBK
is assumed to be known as mentioned earlier. The training is
performed with the RPROP algorithm proposed in [16].

αON

βON

µ

σ2

x1

...

xi

...

xX

...

...

ξ̂

σ̂

p̂

p̂CCA

Input layer Hidden layer Output layer

Fig. 3: Neural Network for parameter estimation.

IV. NUMERICAL PERFORMANCE EVALUATION

In this section we evaluate the accuracy of the proposed LT
and NN based estimation. We select 104 (ξ, σ, p, pCCA) param-
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Fig. 4: The accuracy of the LT-based estimation with respect
to the number of idle period samples. Results with index +
and − show averages for over and under estimations.

eter vectors, generate a sequence of idle and active periods for
each vector, and run the estimation algorithms. The parameters
are randomized according to Table I, to cover a wide range
of traffic patterns. As stated in Section III it is assumed that
the fA(t) parameters can be estimated correctly and αBK is
known. We measure the sensing accuracy by calculating the
mean absolute error (MAE) of the p and pCCA and the mean
percentage error (MPE) of the ξ and σ estimation. We evaluate,
how the estimation accuracy changes with N , the number of
collected observable idle period samples, since this quantity
reflects the required sensing time.

TABLE I: Model Parameters

Parameter Distribution Min Max Mean StdDev
ξ Truncated Gaussian 0.1 0.4 0.3095 0.1
σ Truncated Gaussian 1e-4 0.1 0.02 0.2
p Uniform 0.1 1.0

pCCA Uniform 0.1 1.0
αON Uniform 0.0008 0.001
βON Uniform αON 0.0015
αBK Deterministic 0.0007

A. LT-based Parameter Estimation

The performance of the LT based parameter estimation
depends not only on the traffic parameters, but also on S,
the considered number of s-domain points, and the parameters
of the discrete stochastic optimization. For the evaluations
presented here we fix S = 103, sk ∈ (100, 105), 1 ≤ k ≤ S,
nm = 1, πmax = N/2, and select {ξi, σi, pi} with granularity
10−4 to define the states Ki = {ξi, σi, pi}, unless otherwise
stated. We additionally implement an exhaustive search algo-
rithm with a granularity of 104 for performance comparison.

Figure 4 depicts the accuracy of the iterative LT-based
estimation algorithm with respect to N , the total number of
idle period samples gathered in the sensing time. We consider
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Fig. 5: The accuracy of the LT-based estimation algorithm with
respect to the observable load, pCCA. N = 104 samples.
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Fig. 6: The accuracy of the LT-based estimation with respect
to the number of iterations, and the granularity of the state
space. Exhaustive search results are shown for comparison.

MAE and MPE values averaged over all results, and averaged
over results with over and under estimation. The estimation
accuracy is, clearly, an increasing function of the number of
considered samples. The LT-based estimation is very accurate
for the model coefficients, p an pCCA while it shows a higher
– but still acceptable – error for the Pareto parameters. An
observed idle period sample size of 104 results in excellent
accuracy. For low observable WLAN load cases, however, a
sample size of 103 still gives sufficient accuracy while keeping
the sensing time in the order of seconds.

Since the distribution of fĨ(t) depends significantly on
the observable load parameter, pCCA, we investigate how its
value affects the estimation accuracy. As shown in Figure 5,
the estimation quality increases only marginally with pCCA,
apart from the pCCA values themselves, where the increasing
MAE reflects a constant percentage error. Therefore, we can
conclude that the LT-based algorithm can achieve a good
approximation of the Global View parameters, ξ, σ and p from
the locally observed time series, even in the case of small pCCA.
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Finally, Figure 6 evaluates the effect of the size of the state
space of the discrete optimization. We change the granularity
of the state parameters {ξi, σi, pi} from 10−1 to 10−5 to
increase the state space. The results show that the performance
of the proposed algorithm is comparable to the one of the
exhaustive search. The accuracy increases with increased state
space for a while, but after a point the state space becomes too
large and the minimizer can not be discovered in the limited
number of iterations. Therefore the granularity needs to be
optimized according to the sample size N .

B. NN-based Parameter Estimation

To evaluate the performance of the NN-based parameter
estimation we keep the NN structure fixed and consider 200
sample points from the empirical idle time distribution as NN
inputs. We train the network with 104 training sequences, with
input vectors selected according to Table I.
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Fig. 7: The accuracy of the NN-based estimation with respect
to the number of the idle period samples. Results with index +
and − show averages for over and under estimations. Training
vectors from 103 and 105 idle period samples are considered.

Figure 7 depicts the accuracy of the NN-based parameter
estimation with respect to the number of idle period samples,
N , considering training vectors from 103 and 105 idle period
samples. It also shows the percentage of Missed Estimation
(Fail) events, when an output neutron retrieves a value out
of the parameter’s range, for instance, σ̂ < 0 or p̂ 6∈ [0, 1]
etc. We notice the counter-intuitive result, that the training
dataset from larger idle samples’ size results in lower sensing
accuracy. This happens because the neural network learned
how to estimate parameters from examples finer than the tested
ones and it expects data with the same, or even better precision.
The achieved accuracy shows the same trends as in the case
of the LT-based estimation, with marginally improved values
for p, pCCA and worse for ξ, σ. Notice, that the high MPE−

TABLE II: WLAN Configuration Parameters

WLAN range 100m Tx-Rate (ρWLAN) 11Mbps
Number of Users 5 Path-Loss Exp. (α) 2.5

WU Tx-Power (PWU) 15dBm Ref. Distance (d0) 1m
AP Tx-Power (PAP) 15dBm Noise Power (σ2

N ) -174 dB/Hz

values for σ come from rare cases of parameter overestimation,
and do not affect the average performance significantly.

Comparing the LT and the NN solutions we can see that
the NN achieves slightly worse accuracy and at the same time
misses the estimation with low probability. The algorithmic
complexity is, however, different in the two cases. The LT-
based estimation requires relatively complex calculations for
the parameter estimation, while only the off-line training is
complex in the Neural Network method.

V. EVALUATION OF ESTIMATION ACCURACY IN A WSN –
SIMULATION STUDY

While the previous results give us valuable insight on
the average estimation accuracy they do not show whether
sensors in a WSN will have a similar understanding of the
channel occupancy distribution, a desirable property for effi-
cient cognitive networking. Therefore, we perform simulation-
based evaluation, using the NS-Miracle framework [17] and
implementing the NN-based parameter estimation.

We consider a single IEEE 802.11b WLAN Access Point
(AP) and 5 Wireless Users (WUs) placed arbitrarily inside the
coverage area around the AP. The WUs are stationary and
operate in a “high SNR regime”, thus the collision probability
in the WLAN is negligible. We inject traffic in the WLAN
by generating active and idle periods according to the Global
View model and parameters from Table I. We randomly assign
each active period with equal probability to the AP or any
of the WUs, which transmit a packet with the correspond-
ing frame-in-the-air duration. For the WSN we consider a
fixed network on a square grid, where the distance between
adjacent sensors is 30m. For each sensor we implement the
IEEE 802.15.4 CCA process, and deploy an NN trained with
input vectors from Table I. We consider a simple, path-loss
propagation model for the WLAN-WSN link and set the WSN
sensitivity so that each sensor has a disc shaped CCA area with
35m radius. The presented results are based on 104 simulation
runs with fixed WU locations but randomized Global View
parameter values. Table II summarizes the configuration of
the networking environment.

We restrict the analysis to the WSN nodes that have at least
one WLAN transmitter in their CCA area, which gives us
the topology depicted in Figure 8. We aim at comparing the
estimation results of all these sensors and also the estimation
accuracy of the sensors that have the same pCCA values,
but observe different WLAN devices, therefore these are
distinguished in the Figure.

Figure 9 shows, as an example, the average estimation error
of the weight p, for 104 samples, at the sensors with pCCA> 0.
The achieved accuracy is quite similar across the sensors and
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Fig. 8: The WLAN and the WSN topologies in the simulator.

slightly lower than the one in the numerical evaluation in
Figure 7, probably because the experienced pCCA values are
now fixed. In Figure 10 we evaluate – by averaging over
104 simulation runs – the estimation error variations among
the sensors within each run. We calculate the Coefficient of
Variation (CV) of the error (MAE or MPE) across the sensors
and depict its mean and standard deviation value. The resulting
small value of the CV shows that the sensors achieve a
consensus for all the estimated parameters, with slightly larger
variations when considering sensors with different observable
load parameter, pCCA. From these results we can conclude that
the traffic parameter values estimated by the individual sensors
are sufficiently close to each other, and sensors estimate a
similar Global View, despite their limited sensing capabilities.
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Fig. 9: Average p-estimation error on each sensor with pCCA >
0, based on simulation. The solid lines correspond to the
numerically evaluated error according to the NN algorithm.
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Fig. 10: Coefficient of Variation of the estimation errors at the
sensors that are grouped according to the experienced pCCA
over 104 simulation runs. N = 104 samples.

VI. CONCLUSIONS

In this work we evaluated the capability of limited detection
range WSN nodes to parameterize a WLAN channel occu-
pancy model based on local sensing. We considered MSE
minimization in the Laplace domain and NN based parameter
estimation, and concluded, that both of them provide accurate
results, while the LT-based solution shows higher reliability
and the NN solution has slightly worse accuracy but sig-
nificantly lower computational complexity. Therefore, when
selecting the preferable solution the requirements towards
reliability and the available computational resources at the
sensors have to be considered.
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