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Abstract—In this paper we discuss topology design and di-
mensioning of sensor networks to achieve full sensing coverage.
We consider two ways of deploying the sensors, placing them
according to some regular pattern or scattering them randomly,
and two ways of activating the sensors, optimally according to
some predefined schedule or randomly, when each sensor follows
a wake-up schedule independently from the other sensors. We
provide analytic expressions for the necessary and sufficient
number of sensors that guarantee coverage in these scenarios
and determine the cases when deterministic sensor placement
or optimal sensor activation can achieve significant gains. We
consider sensing with bounded delay and show that the number
of sensors to be deployed can be decreased significantly even at
low sensing delays.

I. INTRODUCTION

Sensor network dimensioning involves determining the
required sensor density according to some objectives, like
sensing coverage, connectivity of the sensor network, given
throughput, limited data fusion delay, or robustness against
errors. In this paper we consider full sensing coverage as
objective, that is, the sensor network should detect any event in
an area. The number of sensors needed for sensing coverage
depends on the sensing radius of the sensors, on the ratio
of time the sensors are active and on the sensor placement
and activation method. If sensors are scattered randomly,
the position of a sensor is independent of the other sensor
positions, thus many sensors may sense the same area. If
sensors are placed according to a regular pattern, the areas
sensed by many sensors and thus the number of sensors needed
for coverage can be minimized. Similarly, if wake-up cycles
are not coordinated across the network, sensors close to each
other may be active at the same time. The optimal scheduling
of wake-up cycles minimizes the areas sensed by several active
sensors and thus the number of sensors required for coverage.
Deterministic sensor placement is, however, not possible in all
applications, and coordinated wake-up schedules require the
exchange of control messages in the sensor network, using
transmission capacity and energy, both being scarce resources
in typical sensor networks. Our aim is to derive the possible
gains of deterministic sensor placement and coordinated sensor
activation, given the sensing radius of the sensors and the
fraction of the time they are active.
Network dimensioning for coverage has been addressed

by several research papers before. In [1] the deterministic
placement of always active sensors is considered, and the
necessary number of sensors needed for coverage and con-
nectivity is derived for different deployment patterns. Network
coverage with connectivity is addressed in [2] for the case of
deterministic placement and random node failure. The main
theorems of this paper are starting points for our analysis.
In [3] conditions for k-coverage with probability one are de-
rived, as the number of nodes approaches infinity, considering
deterministic, uniform and Poisson deployment and random
wake-up schedules. A large number of proposals addresses
the problem of coordinating wake-up schedules in order to
minimize the time sensors need to be active, usually assuming
random sensor placement, for example [4], [5] and more
recently [6], [7].
Our work extends these previous results by providing a

systematic comparison of all possible scenarios combining
deterministic or random sensor placement and optimally co-
ordinated or random wake-up scheduling. As a result, our
analysis defines the regions where coordination can achieve
significant gains considering the number of sensors deployed
or their energy consumption. While we only consider sensing
coverage, conditions for coverage with connectivity can be
derived as in [1].
The paper is organized as follows. In section II we describe

the addressed scenarios. In sections III and IV we derive
sufficient and necessary conditions to achieve spatial coverage.
Section V discusses the case of event detection with bounded
delay. Performance evaluation of the different scenarios is
presented in section VI. We conclude the paper in section VII.

II. SYSTEM DESCRIPTION
We consider a unit square area that has to be covered by

identical, static sensors. To describe the sensing capability of
the sensors we apply the disc model, generally used in previous
works. That is, the coverage area of a sensor is a disc with
radius r and the sensors can detect all events within this area.
We will address probabilistic detection in future work [8]. To
extend network lifetime by saving sensor energy, each sensor
follows a wake-up cycle, being active in p fraction of time
and asleep otherwise. A sensor can detect an event within its
sensing area iff it is active. We derive necessary and sufficient
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Fig. 1. Sensors a) deployed in a square grid b) scattered randomly

conditions on N , the number of sensors to be deployed, to
achieve full coverage at any random point of time t with
probability Pc. We consider four scenarios: (DO) sensors are
placed deterministically according to some regular pattern and
the wake-up cycles follow an optimal schedule across the
network; (DR) sensors are placed deterministically according
to a regular pattern, but wake-up cycles are not coordinated;
(RR) sensors are scattered randomly, and wake-up cycles are
not coordinated; and (RO) sensors are scattered randomly, but
the wake-up cycles follow an optimal schedule. By optimal
schedule we mean that the areas sensed by more than one
active sensor are minimized for all points of time.
The DO scenario does not include any randomness and we

can calculate the exact number of sensors required to provide
full coverage. In [1] Na, the required number of sensors is
derived, assuming that sensors stay always active. If sensors
are active in p portion of time, we need at least d 1peNa sensors
to cover the same area at any random point in time. To simplify
notation we write 1

p instead of d 1pe in the rest of the paper.
Using the results of [1] for Na, the number of sensors in the
DO scenario is:

N = 0.38
1

pr2
. (1)

III. SUFFICIENT CONDITIONS FOR COVERAGE
In this section of the paper we study the sufficient conditions

for coverage for all the different placement and wake-up
scenarios presented above. We first consider the deterministic
placement scenario, with random sensor wake-up schedule.
Then we continue deriving the sufficient conditions for the
random sensor deployment cases, with random or deterministic
wake-up schedule.

A. Deterministic Placement - Random Wake-up Schedule (DR)
We consider a set of sensors deployed according to some

regular pattern in a unit square area as shown in Figure 1.a. We
follow the argumentation in [2] to derive a sufficient condition
on the number of sensors, N , in the DR case. We introduce
auxiliary variables α and β and cover the unit area with
a set of rectangular areas in such a way that the distance
between their centers is equal to αr, α ≥ 0. Around these
centers we draw circles with radii rc = βr, β ∈ (0, 1),
as shown in Figure 2. The number of sensors in a circle is
πr2cN for regular deployment patterns and the total number
of circles is K = b1/(αr)2c. Notice that the circles will

Fig. 2. Drawn circles inside the squares that split the unit area

overlap in case α < 2β. We ignore possible edge effects,
as rounding down the number of drawn circles to the nearest
integer might leave uncovered space at the edges of the unit
area. We also neglect approximation errors originating from
the assumption that the number of sensors in each of the circles
is exactly πr2cN . Errors resulting from these approximations
are negligible if the deployment density is high, thus for
sufficiently large N . For the rest of the analysis we will always
ignore these approximation errors. Also, to ease reading we
omit the rounding notations throughout the paper.
The entire area will be covered at time t, if there is at least

one active sensor node in each circle and this sensor is able
to sense the rectangular area, around the circle. As it is shown
in Figure 2, a sensor deployed at an arbitrary point M inside
the circle with center O is able to cover the whole square
ABCD, if it can sense the points A,B,C and D. Without
loss of generality, we assume that distance dAM is larger than
dBM , dCM or dDM . Applying the triangular inequality, we
can write: dAM ≤ dMO + dOA ≤ βr+ αr√

2
. So, the condition

that should hold for the whole rectangle to be covered by any
sensor inside the circle is:

dAM ≤ r ⇒ β +
α√
2
≤ 1. (2)

Let us define event Ai as:

Ai(t) := {There is at least 1 active sensor in circle i at time t},
i = 1, 2, ...,K. The probability that a sensor is active at
time t is p, independent of t. Therefore we can omit the
time parameter in our derivations. Then, if Pc expresses the
probability that the unit area is fully covered by the sensor
network, we can write:

Pc ≥ P (
TK
i Ai)

= 1− P (
SK
i Āi)

≥ 1−P1/αr2

i=1 (1− p)πr
2
cN

= 1− 1
α2r2 (1− p)πβ

2r2N

≥ 1− 1
α2r2

(1− p)π(1−a/
√
2)2r2N .

(3)
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Solving (3) with respect to N we get:

N ≥ log(α2r2(1− Pc))

πr2(1− α√
2
)2log(1− p)

. (4)

The minimum of (4) with respect to α is found by setting
the partial derivative to zero:

∂

∂α
(

log(α2r2(1− Pc))

πr2(1− α√
2
)2log(1− p)

) = 0,

which is equivalent to

2log(α) +
√
2/α = 1 + log(1/(r2(1− Pc))). (5)

Thus, (5) gives the value of α that minimizes the sufficient
condition derived in (4) for given r and Pc.

B. Random Placement - Random Wake-up Schedule (RR)
According to this scenario the sensors are uniformly dis-

tributed, independently from each other inside the unit square
area, as shown in Figure 1.b. Thus, the number of sensors
inside a specific drawn circle follows a binomial distribution:

P (k) =

µ
N

k

¶
(πr2β2)k(1− πr2β2)N−k.

The probability of the complementary event

Āi := {There is no active sensor in circle i}
is equal to:

P (Āi) =
NX
k=0

(1− p)k
µ
N

k

¶
(πr2β2)k(1− πr2β2)N−k. (6)

P (Āi) is equal to the Z-Transform of the binomial distri-
bution: PAi = G(1 − p). For N sufficiently large, we can
write:

G(z) = e(z−1)E[X], (7)

where E[X] is the mean of the binomial distribution: E[X] =
Nπr2β2.
From (6) and (7) we get: P (Āi) = e−pNπr2β2 . Replacing

this result to (3), we derive a sufficient condition for N similar
to that in (4):

N ≥ − log(α
2r2(1− Pc))

πr2(1− α√
2
)2p

. (8)

Again, (5) gives the value of α that minimizes N in (8).

C. Random Placement - Optimal Wake-up Schedule (RO)
In this case we still consider that the sensors are randomly

deployed inside the unit area, however their wake-up schedule
is coordinated optimally, that is, an arbitrary point in the
unit area requires to be covered by 1/p sensors. Complying
with the argumentation developed in the previous cases, the
sufficient condition for coverage is the existence of at least 1/p
sensors in each of the drawn circles. The number of sensors
inside each circle still follows a binomial distribution. If we
define event A(p)i as:

A
(p)
i := {At least 1/p sensors in circle i},

Fig. 3. Non overlapping circles in the unit area

we obtain the following sufficient condition:

Pc ≥ P (
T
iA

(p)
i )

= 1− P (
S
i Ā

(p)
i ) ≥ 1−P 1

α2r2

i=1 P (Ā(p)i )

= 1−P 1
α2r2

i=1

P 1
p−1
j=0

¡
N
j

¢
(πr2β2)j(1− πr2β2)N−j

= 1− 1
α2r2

P 1
p−1
j=0

¡
N
j

¢
(πr2β2)j(1− πr2β2)N−j .

(9)

The sufficient number of sensors that guarantees coverage
at least with probability Pc is the lowest N that satisfies (9)
with α,β satisfying (2).

IV. NECESSARY CONDITIONS FOR COVERAGE

In this section we derive the lower bounds on the number
of sensors to be deployed to guarantee coverage. Again, we
start with the case of a grid network and then we extend our
study to random deployment of sensors.

A. Deterministic Placement - Random Wake-up Schedule (DR)

We consider again the grid sensor network of N sensors
shown in Figure 1.a. The derivation of the necessary condition
for the DR case is based on the idea discussed in [2]. We
place in the unit area a number of non-overlapping circles
with radius equal to the sensing radius r, as shown in Figure
3. To fully cover the unit area it is necessary to cover the
centers of the circles. That is, there has to be at least one
active sensor in each circle:

Pc ≤ P (At least 1 active sensor in each circle)

= [1− (1− p)πr
2N ]K ,

(10)

where K = 1
2
√
3r2

is the number of circles and πr2N is the
number of sensors in each circle.
Solving (10) with respect to N we get:

N ≥ log(−2√3r2log(Pc))
πr2log(1− p)

. (11)
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B. Random Placement - Random Wake-up Schedule (RR)
The derivation of the necessary condition in the case of grid

deployment of sensors was based on the fact that the number of
active sensors in each of the non-overlapping circles does not
depend on the number of sensors inside the rest of the circles.
However, this assumption does not hold in the case of random
deployment. Therefore, for the derivation of a necessary bound
in the RR case we have to follow a slightly different approach.
Again, it is necessary, that there is at least one active sensor

in each of the K circles in Figure 3. We define event Ci as:

Ci = {There are i circles without any active sensors}.
Since the sensors are uniformly distributed inside the unit area,
the probability of the event Ci will be:

P (Ci) =

µ
K

i

¶
(1− iπr2p)N . (12)

As the events Ci, i = 1, 2, ..., K are mutually exclusive, we
can write:

Pc ≤ P (at least 1 active sensor in each circle)

= 1− P (at least 1 empty circle)

= 1− P (
S
i Ci) = 1−

PK
i=1 P (Ci)

= 1−PK
i=1

¡
K
i

¢
(1− ipπr2)N ,

(13)

that gives the necessary number of sensors to cover the area
in the RR scenario.

C. Random Placement - Optimal Wake-up Schedule (RO)
As in the derivation of the sufficient condition for the RO

case, a necessary condition for coverage requires that each of
the drawn circles has at least 1/p sensors. We define:

C
(p)
i := {There are i circles with less than 1/p sensors}.
Considering uniform distribution of sensors, we determine

the probability of this event:

P (C
(p)
i ) =

¡
K
i

¢ P1/p−1
x1=0

P1/p−1
x2=0

...

...
P1/p−1

xi=0
f (N)(x1)...f (N)(xi−1)f (N−x1−..−xi−1)(xi),

(14)

where xj is the number of sensors in circle j and f (N)(xj)
is the binomial distribution:

f (N)(xj) =

µ
N

xj

¶
(πr2)xj (1− πr2)N−xj . (15)

Extending the argumentation in (13) the necessary number
of sensors in the RO case is given by:

Pc ≤ P (at least 1/p active sensors in each circle)

= 1− P (at least 1 circle with less then 1/p sensors)

= 1− P (
S
iC

(p)
i ) = 1−PK

i=1 P (C
(p)
i ).

The derivation of the necessary bound may require exhaus-
tive calculation, in case K, the number of circles, is large. We

Fig. 4. Event detection with limited delay and optimal scheduling

Fig. 5. Markovian wake-up cycle model

obtain a slightly looser bound, if we limit the summation in
(16) up to an integer k << K . For high Pc it is very unlikely
that more than a few circles will contain less than 1/p sensors,
so we reduce the computation overhead, without distorting the
analytical result significantly.

V. NECESSARY AND SUFFICIENT CONDITIONS
INTRODUCING DELAY FLEXIBILITY

In this section we study how the necessary and sufficient
conditions derived in the previous sections are affected if delay
flexibility is introduced in the sensing process. We assume that
events that take place at random time instants do not have to
be sensed immediately. Instead, a bounded sensing delay d
is allowed. We examine both the scenarios of optimal and
random wake-up schedule.

A. Delay with Optimal Wake-up Schedule
We consider the sensors synchronized with each other,

allocating their active times optimally. As discussed above,
an arbitrary point in the unit area should be covered by 1/p
sensors, where p is defined as the portion of the cycle period
a sensor is active. We consider now a deterministic wake-up
cycle. The cycle period has a unit length, starting with an
active period of time p. We express the delay flexibility d as a
percentage of the cycle length. An event is detected by a sensor
if it happens during its active period or within d time-interval
before the sensor becomes active. Then, as shown in Figure
4, a random point should be covered by max(1, 1/(p + d))
sensors. This value replaces 1/p in the sufficient or necessary
bounds derived in (1), (9) and (16).

B. Delay with Random Wake-up Schedule
Now we model the effect of delay flexibility when the

wake-up cycles of the sensors are not coordinated across the
network. We would like to evaluate whether the distribution of
the active and sleep times of the sensors affects the achievable
gain. Therefore we consider both deterministic and Markovian
wake-up cycles.
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Fig. 6. Number of sensors versus the probability that a sensor is active,
r = 0.025

Deterministic wake-up cycle: The sensor follows a determin-
istic wake-up cycle of unit length, being active in p portion of
the cycle. The probability that an event will be sensed by the
sensor within the delay limit d is equal to

p̂ = min(1, p+ d),

where both p and d express percentages of the sensor cycle
period.
Markovian wake-up cycle: As shown on Figure 5 a 2-state
continuous time Markovian model gives the behavior of the
sensor, that is active and sleep periods have exponential distri-
bution [9]. Parameters λ and µ are chosen such that 1/λ = p
and 1/µ = 1− p gives the average time the sensor spends in
active and sleeping states respectively. The probability that a
random event will not be sensed by the sensor within the delay
limit d can be expressed as the probability that the sensor is
sleeping at the time of the event and does not wake up within
time d. That is, p̂, the probability that the event will be sensed
by the sensor is equal to:

p̂ = 1− (1− p)e−d/(1−p).

The above expressions of p̂ replace parameter p in all neces-
sary or sufficient conditions under random wake-up schedule
given by (4), (8), (10) and (13).

VI. PERFORMANCE EVALUATION
In this section we compare the number of sensors required

to provide full coverage with high probability using the deter-
ministic or random sensor placement and optimal or random
wake-up time scheduling. We base our comparison on the
necessary and sufficient conditions derived in sections III -
V. In all cases we consider Pc = 0.99. Most of the figures are
shown with a log-log scale.
Figure 6 shows the necessary and sufficient conditions on

the number of sensors required to provide full connectivity
with Pc for the randomized scenarios, and the number of
sensors required for full connectivity in the DO case, as a
function of p, the probability that a sensor is active. We can
conclude that there is one order of magnitude gain between
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Fig. 7. Necessary and Sufficient conditions along with the simulation results
for DR and RR Cases, r = 0.05.
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Fig. 8. Number of sensors versus sensing radius, p = 0.3.

DO and RR, independently of the value of p, a gain that sensor
placement and wake-up coordination schemes can utilize. The
gain due to deterministic placement diminishes though as p
decreases, that is, the performance of DO and RO solutions
and the performance of DR and RR solutions converge at
small p. Specifically, the gain due to deterministic placement
diminishes around p = 0.1 under random wake-up. This
convergence can be predicted from (4), (8). Similarly, the
gain of optimal wake-up scheduling decreases as p increases,
and the performance of the RO solution converges to the
performance of RR. The ratio of the necessary and sufficient
conditions on N (that is the gap between the curves with
logarithmic scale) does not depend on p in the case of random
wake-up scheduling, and the conditions converge in the case
of optimal wake-up schedule. To evaluate the tightness of
the conditions we show simulation results for the DR and
RR cases on Figure 7. The results show that the sufficient
condition on N is rather tight. The necessary conditions are
looser due to the uncovered area on Figure 3.
Next we evaluate the tightness of the derived bounds as

a function of the sensing radius r on Figure 8, considering
p = 0.3. The figure shows that the gap between the necessary
and sufficient conditions remains constant as r changes. The
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Fig. 9. Number of sensors with sensing delay (DO and DR), r = 0.05.
(Only Sufficient Conditions plotted)
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Fig. 10. Number of sensors with sensing delay (RO and RR), r = 0.05.
(Only Sufficient Conditions plotted)

gaps are very similar for DR, RO and RR. The curves are
nearly linear in the log-log graph, reflecting that N increases
with 1/r2.
Figures 9-11 evaluate the possible gains with limited de-

tection delay based on the results of section V. We show
results for d=0.5% and 5%. The possible gain due to delayed
detection is related to the wake-up schedules, therefore we
compare the DO and DR cases in Figure 9 and the RO and
RR cases on Figure 10. As we can see, delayed detection can
lead to nearly one order of magnitude gain in the number of
sensors at low values of p. Already at 5% delay the number of
sensors needed with random wake-up approaches the number
of sensors needed with optimal wake-up scheduling but with-
out any detection delay. Finally, we compare delayed detection
under deterministic and Markovian wake-up cycles. Figure 11
shows the sufficient conditions for p = 0.5 − 1. For p close
to 1 the sufficient condition under the deterministic wake-up
cycle converges to its minimum (1 sensor in each drawn circle)
much faster than the one under Markovian cycles. The gain
diminishes rapidly as p decreases. That is, the distribution of
the active and sleeping times does not affect the performance
of delayed detection significantly.
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Fig. 11. Number of sensors with sensing delay, deterministic and exponential
active times, r = 0.05. (Only Sufficient Conditions plotted)

VII. CONCLUSIONS
In this paper we derived analytic models to bound the num-

ber of sensors required for full coverage with high probability
under deterministic and random sensor placement and optimal
and random wake-up schedules. We concluded that there is an
order of magnitude gain between the deterministic placement
- optimal schedule and random placement - random sched-
ule solutions that sensor placement and wake-up schedule
coordination methods can utilize. We showed that the gain
of deterministic placement diminishes when sensors are only
active in a small fraction of time, while the gain of optimal
scheduling decreases with the probability of the sensors being
active. Finally, we have shown that the number of sensors
required or the need of coordinated wake-up can be relaxed if
a detection delay of a couple of percent of the wake-up cycle
length is allowed.
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