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ABSTRACT
In this work we evaluate the efficiency of cooperative spec-
trum sensing to support cognitive radio operation, when
sensing is assigned to the cognitive users, randomly located
in the area of a primary network. We derive analytic ex-
pressions for sensing performance based on the traditional
metrics of missed detection and false alarm probabilities,
and show the existence of an optimal cooperation range.
False alarm and missed detection probabilities, however, do
not directly lead to performance degradation in the primary
and low utilization in the cognitive system. We propose an
interference model taking the cognitive access into account
and optimize the sensing parameters in order to maximize
the cognitive network capacity while satisfying the primary
network interference constraints.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication

General Terms
Design,Performance

1. INTRODUCTION
Cognitive radio technology has been proposed to allow un-

licensed (secondary) networks to access spectrum resources
which are left unused by incumbent (primary) operators.
The critical issue for allowing dynamic access in primary
bands is to eliminate or limit the possibility of interfer-
ence between the primary system and the secondary sys-
tem. Secondary systems therefore need to include mecha-
nisms for sensing the radio environment and detecting spec-
trum holes, within which cognitive operation will not create
interference. Sensing accuracy and reliability, although cru-
cial for cognitive actuation, are limited by electromagnetic
signal attenuation due to path-loss and fading [1] and it has
been shown that they can be significantly enhanced through
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sensor collaboration, an idea defined as distributed (or co-
operative) sensing [2][3]. Energy detection has been mainly
considered for local decision at the sensors, assuming lack of
knowledge regarding primary users’ transmission schemes,
although lately more sophisticated detection methods have
been proposed as well [4]. While most of these works as-
sume that the quality of distributed sensing is independent
of the sensor–primary transmitter distance, a distance de-
pendent model has been proposed for regular sensor net-
works in [5]. Interference modelling in cognitive networks is
addressed in [6] and [7]. The authors of [6] propose a way to
model the interference between the primary and cognitive
network, where the interference originates from imperfect
spectrum sensing. They investigate the tradeoff between
the capacity of the cognitive network and the interference
caused to coexisting primary users. The paper assumes that
a missed detection always results in interference and does
not consider the interference between the primary and sec-
ondary users as distance-dependent. A recent interference
modelling approach that takes the spatial distribution of the
cognitive users into consideration is proposed in [7], where
the authors model the accumulative interference to a pri-
mary user in the case of multiple simultaneous cognitive
user transmissions. Employing a similar interference model
we move a step further by optimizing distributed spectrum
sensing for cognitive network capacity maximization. We
give analytic formulation to determine the set of sensing
parameters and level of inter-sensor cooperation that maxi-
mize the throughput of the cognitive users while guarantee-
ing that the average interference between the primary and
cognitive users is below the acceptable limits.

The remainder of the paper is organized as follows. The
considered networking scenario is described in Section 2. In
Section 3 we provide analytical results for spectrum sensing
performance along with numerical results. In section 4 we
formulate the optimization problem to maximize cognitive
network capacity under interference constraints, and eval-
uate the optimal system performance. Section 5 concludes
the paper.

2. SCENARIO DESCRIPTION
Figure 1 depicts the networking scenario addressed in this

paper. The primary and secondary (cognitive) users - mo-
bile terminals and possibly base stations - are located in the
same area. Secondary users (SU) are equipped with spec-
trum sensors and perform spectrum sensing in a cooperative
way to assist the cognitive operation. Since neither the lo-
cations of the primary transmitters (PU) nor the locations
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Figure 1: The considered scenario. Primary and
secondary networks coexist in the same area, so the
interference between them must be controlled.

of the primary receivers are known, secondary users have
to collect spectrum availability information from the entire
region where they can cause interference.

The performance of spectrum sensing is enhanced by col-
laborative sensing. We consider randomly located secondary
users, but assume that they are aware of each others’ rela-
tive locations, for instance with the help of GPS or by em-
ploying localization techniques [8]. Each secondary user col-
lects spectrum measurements over a set of narrow frequency
bands, e.g., according to OFDM subcarriers, and shares this
information with other secondary users within the coopera-
tion area. Secondary users then decide about the existence
of primary transmitters based on the collected information.

We consider a secondary network where sensing informa-
tion is exchanged over a dedicated low bitrate control chan-
nel. The secondary users operate in a time-slotted, slot-
synchronized manner. They conduct spectrum measure-
ments and share spectrum availability information at the
beginning of a time-slot, and transmit in the second part
of the time-slot, if free bands have been detected. The slot
length is set based on the interference constraints of the pri-
mary system.

To limit the amount of information to be collected, we
consider hard decision combining, that is, each sensor shares
only its“only noise”or“signal present”decision. We evaluate
the OR (occupied if at least one sensor decides for signal
present) decision rule. For simplicity we consider energy
detection to perform local hard decisions at each sensor.

3. SENSING PERFORMANCE
First we study the sensing performance of the ad-hoc sec-

ondary network that has been described in the above sec-
tion, considering the probabilities of false alarm and missed
detection. We first introduce the signal propagation model
that will be employed in our analysis. Considering energy
detection we derive formulas for local sensing performance,
which will help us to evaluate the behavior of the coopera-
tive sensing scheme in the last part of the section.

3.1 Channel model
For simplicity we will consider a Rayleigh flat-fading chan-

nel enhanced with log-normal shadowing, to account for
large scale fading, as in [5]. Again, we model the wireless
link between the transmitter and an arbitrary sensor l at a
distance dl by an equivalent baseband channel:

hl =
1

(dl/d0)
η/2

ejφlαl 10ζl/20. (1)

In (1) d0 is a close-in reference, η is the path-loss expo-
nent, αl, ζl are a unit - variance Rayleigh and a lognormal
distributed random variable respectively representing small
scale fading and shadowing phenomena and φl is a random
phase shift uniformly distributed in [−π

2
, π

2
].

Since the correlation distance for small scale fading is in
the order of tens of wavelengths, we can practically assume
that Rayleigh variables are independent. Considering ur-
ban scenarios, shadowing correlation is distance dependent
laying in the range between 5 and 50 meters [9] for carrier
frequencies around 2GHz. For the purposes of our analysis
we will assume that shadowing realizations for the different
sensors are independent as well. Based on the derived re-
sults we will investigate to which extent this assumption is
valid.

3.2 Cooperative sensing model
Our aim is to derive the sensing performance of the net-

work of cognitive users as a function of the network density.
The existence of an optimal cooperation range is expected,
that jointly minimizes the probabilities of false alarm and
missed detection. False alarm probability increases with co-
operation radius as more users collaborate to make a deci-
sion. Detection probability, however, increases with cooper-
ation radius up to a point when the users further away from
the signal source are unable to contribute to the decision
due to the low received energy.

As in [5] we assume that local sensing is performed under
the formulation of a binary hypothesis test. We denote the
“only noise” and “signal present” hypotheses by H0 and H1

respectively. Considering energy detection technique, the
local decision test at an arbitrary sensor l is given by:

yl � 1

K

K∑
k=1

|rl [k]|2
H1

�
H0

γ0,

where rl is the received signal down-converted to baseband,
K is the total number of signal samples considered for one
local decision and γ0 is the selected energy threshold that is
compared to the output of the energy detector. Then the
probability density functions of the local test under H0 and
H1 can be expressed as:

pY (y;H0) =
1

(σ/K)2KΓ (K)
yK−1ey/(σ/K)2 ,

and

pY (y;H1/α, ζ) =

= 1
(σ/K)2

(
y
q2

) (K−1)
2

e
− (q2+y)

(σ/K)2 IK−1

(√
y 2q

(σ/K)2

)
,

where we have used the quantity q2 � PSK
10ζl α2

l
(dl/d0)η , PS

is the transmitted signal power in the considered band, i.e.
PS = |s|2, and IK (·) is the K-th order Bessel modified func-
tion of the first kind.

The local false alarm and missed detection probabilities,
pfa = Pr{y > γ0;H0}, pmd = Pr{y ≤ γ0;H1} with respect
to the energy threshold γ0 are given as in [5] – pmd averaged
over the random variables αl and ζl:

pfa =

∫ +∞

γ0

pY (y;H0) dy, (2)
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pmd =

γ0∫
0

+∞∫
0

+∞∫
−∞

pY (y;H1|α, ζ) p (ζ) p (α) dζdαdy. (3)

Next we derive the expressions for false alarm and missed
detection probabilities under sensor cooperation, assuming
that sensor measurements are uncorrelated. The presence of
a transmitter at a given physical point O is determined by
the secondary users within the circular area centered at O
and with cooperation radius Rc. The number of secondary
users in this area follows a Poisson distribution with param-
eter πR2

cρ, where ρ denotes the secondary network density.
Since the cognitive users are independently and uniformly
distributed in the sensing area we can first determine the
local probability of missed detection considering their spa-
tial distribution. We consider a ring of width dr at distance
r from O. The probability that a cognitive user lies within
this – infinitely thin – ring is given by:

p(r|Rc) = Pr{user lies in the ring at distance r} =
2rdr

R2
c

.

The local missed detection probability for this user can be
derived by averaging, considering its spatial distribution:

pmd(Rc) =

∫ Rc

0

pmd(r)p(r|Rc)dr =

∫ Rc

0

2

R2
c

rpmd(r)dr.

(4)
Considering cooperative sensing and OR decision rule, missed
detection occurs if none of the users detect the signal within
the area of cooperation, that is:

PMD(Rc) = Pr{all users miss detection}
=

∑∞
i=0 [pmd(Rc)]

i · (πR2
cρ)

i
/i! · e−πR2

cρ

= exp{−2πρ
∫ Rc

0
r(1 − pmd(r))dr}.

(5)

False alarm under the same cooperative sensing scheme oc-
curs if at least one of the users issues a false alarm in the
area of cooperation:

PF A(Rc) = 1 − Pr{no user gives false alarm}
= 1 − ∑∞

i=0 (1 − pfa)i · (πR2
cρ)

i
/i! · e−πR2

cρ

= 1 − exp{−πR2
cρ pfa}.

(6)

Equations (5), (6) relate the sensing performance metrics to
the average density ρ of the secondary network and the sens-
ing radius Rc. Cooperative false alarm and missed detection
depend also on local sensing performance which is a function
of the selected energy threshold γ0 and sensing time ts that
corresponds to the K samples that are considered in each
decision.

Consider now the case when the primary system intro-
duces constraints on the missed detection probability and
sensing time. Then we can derive the optimal set of para-
meters (R∗

c , γ∗
0 ) that minimize the probability of false alarm,

and thus maximize the throughput of the cognitive system:

find R∗
c , γ∗

0

minimize PF A(Rc, ts, γ0)

subject to PMD(Rc, ts, γ0) ≤ P
(max)
MD , ts = Ts,

(7)

where P
(max)
MD and Ts denote the constraint values. The opti-

mization problem (7) can be solved numerically by assuming

strong duality and applying the KKT optimality conditions
[10].

Since cognitive users are located randomly in the service
area, the spatial distances between the sensing points can
not be controlled, and sensing observations may be corre-
lated. The derivation of the joint probability distribution
of the sensing observations is however computationally very
expensive. A simple way to evaluate the possible effect of
correlated observations is to estimate the percentage of inter-
sensor distances Di,j that are shorter than a reference dis-
tance dcorr which implies that correlation in measurements
is significant and must be considered. We calculated some
representative values according to the guidelines in [11] and
the results are shown in Figure 2. Note that due to the ran-
dom location, the ratio of sensors with correlated measure-
ments does not depend on density ρ, however, it decreases
with increasing cooperation radius Rc.

3.3 Sensing performance evaluation
In this section we present the results on the sensing perfor-

mance in a single frequency band Bs of the ad-hoc cognitive
network when the primary network is a 802.11 WLAN. Ta-
ble 1 summarizes the system parameters which we consider,
unless otherwise noted. Figure 3 shows the parameter plot

Table 1: Parameter Values for WLAN Case Study

Case Study WLAN

Signal Bandwidth (W ) 20MHz (all channels)
Signal Power (P0) 15dBm

Path Loss (η) 4.5
Shadowing (μ, σ2) 0dBm, 10dB
AWGN Power (σ2) -96dBm

P
(max)
MD 10−3

Maximum Sensing Time (Ts) 0.25msec
Number of Samples (K) 100
Sensed Band Size (Bs) 200kHz

Signal Power in Sensed Band
(P0Bs/W ) -5dBm

Prohibited area radius (RI) 300m

of both performance metrics under given cognitive user den-
sity. Each missed detection – false alarm probability pair
corresponds to a specific γ0 value. The different curves in
the figure correspond to different cooperation radii, i.e. to
different levels of sensor cooperation. As expected, a maxi-
mum performance can be achieved for a certain value of Rc;
increasing Rc above a certain level decreases sensing quality.
We can see that the cooperation radius has to be ca. 200m.
Considering the small ratio of correlated measurements for
such a cooperation radius, as shown in Figure 2, we can con-
clude that the actual system performance lies quite close to
the one derived above, based on the assumption on indepen-
dent sensor observations.

In Figure 4 the relation between the average network den-
sity and the resulting probability of false alarm – derived
from (7) – is depicted for different constraints on sensing
time and missed detection. Clearly, for high sensing qual-
ity – PF A < 10% – and strict system constraints a high
secondary network density is required.
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Figure 5: Interference modelling. Radius RI defines
the disk that corresponds to the prohibited area of a
PU, which is defined by the communication ranges
of the primary and secondary users.

4. SYSTEM OPTIMIZATION FOR
INTERFERENCE

In this section of the paper we discuss how sensing para-
meters can be optimized in order to maximize the cognitive
capacity available for the secondary users while limiting the
interference between the primary and the secondary system.

4.1 Interference management
Figure 5 illustrates the main principles of the considered

interference management. The primary and secondary net-
works coexist in the same geographical area, with secondary
users operating in multiple spectrum bands. A transmit-
ting primary user is surrounded by a prohibited area, within
which secondary transmissions on the same frequency would
cause unacceptable interference. Considering the worst case
scenario – the primary receiver associated with the particu-
lar transmitter lies in the border of the primary transmission
range – the radius of the prohibited area RI is defined by
the power transmission characteristics of primary and sec-
ondary users, associated with transmission ranges Rp and
Rs respectively. In the rest of the analysis we will assume
that these characteristics for primary and secondary users

are fixed and so the radius RI is fixed and known to the
secondary users.

The secondary users try to detect the primary transmis-
sions through spectrum sensing. Once a primary user is
detected, the secondary users that lie inside the prohibited
area of the detected primary user cease transmission in the
respective band.

The bands available for secondary communication are the
ones for which cooperative sensing did not result in a “signal
present” decision, i.e. a correct detection or a false alarm.
These bands are assigned to the secondary users, ensuring
that each user receives at most one band. For simplicity we
assume that the secondary users can successfully communi-
cate over the assigned bands, even if they are simultaneously
used by primary users (i.e. miss-detected bands).

Consider now the situation shown in Figure 5. A primary
user starts transmitting in a primary band W at an arbitrary
point in time. The primary user will encounter interference,
{I}, on band W, if i) spectrum sensing on band W results in
a missed detection, and ii) during the following time interval
this band is assigned to a secondary user, that lies inside its
prohibited area, for cognitive operation. Spectrum sensing
for the location of the considered primary user is conducted
by secondary users inside the area A – determined by the
cooperation radius Rc – as shown in Figure 5. Area B is
the area where secondary users do not sense for the primary
user but cause interference to it if they are transmitting
on frequency W. The union of A and B constitutes the
prohibited area for the considered primary user.

4.2 Interference and cognitive capacity model
The formulation of the optimization problem is based on

the modelling assumptions in section 4.1. First consider
that there exist N1 and N2 secondary users in areas A and
B respectively, assuming RI ≥ Rc. Let the N1 secondary
users in A use the available sensing time (ts) in order to
sense M different bands of bandwidth Bs, W1, ... ,WM . So
the available sensing time for each band Wi will be ts,i =
ts/M, i = 1...M . We assume here that all secondary users
in the considered area sense the same set of bands. Let W ∈
{W1, ...WM}, that is, the primary user transmits in only one
of the sensed bands. To take the feasibility of sensing into
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account, we limit the number of bands M ≤ Mmax. Note
that in this formulation we fix the number of occupied bands
to one, since we are interested in the interference on that
particular band. An extension with the primary network
load as parameter is possible and will be subject of future
work.

Let P (I|(N1, N2)) express the probability of interference
to the primary user, conditioned on the number of secondary
users present. Since the number of secondary users in the
two areas are independent Poisson variables with the same
intensity rate we can write:

P (I|(N1, N2)) =

= Pr{ miss. det.|N1} · Pr{use|N1, N2}. (8)

In the following we derive the expressions for both factors
in (8). Based on OR decision rule, we get:

Pr{ miss. det.|N1} =

=
∏N1

i=1 Pr{ miss. det. from node i} = (pmd(Rc))
N1 .

(9)

Furthermore, the probability that band W will be assigned
for cognitive operation to one of the secondary users in the
prohibited area for the rest of the time slot is given by:

Pr{use|(N1, N2)} =

M−1∑
j=0

min{1,
N1 + N2

j + 1
} · Pfr(j), (10)

where Pfr(j) defines the probability that j out of the M −1
bands are available for cognitive operation after sensing (ex-
cluding the considered band W). A band Wi – out of the
M − 1 initially available ones – may not be available for
cognitive use if spectrum sensing in this band during the
sensing period resulted in a false alarm. Since the probabil-
ity of false alarm is independent for each sensed band, we
get the following expression for Prfr(j):

Pfr(j) = Pr{j bands detected free}
=

(
M−1

j

)
(p

(N1)
fa )M−1−j(1 − p

(N1)
fa )j ,

(11)

where p
(N1)
fa is defined as:

p
(N1)
fa = Pr{False alarm in a single band|N1}

= 1 − (1 − pfa(ts/M))N1 .
(12)

Notice in (9) and (12) that pmd(Rc) and p
(N1)
fa also depend

on the available sensing time for each band Wi, which is a
function of the total sensing time, ts, and the number of
sensed bands, M .

The expected interference between the primary user and
the secondary network is given by the following formula:

P (I) =

=
∑∞

N1=0

∑∞
N2=0 P (I|(N1, N2)) · pN1pN2

=
∑∞

N1=0

∑∞
N2=0[P (I|(N1, N2))·

· (|A|ρ)N1

N1!
e−(|A|ρ) (|B|ρ)N2

N2!
e−(|B|ρ)].

(13)

where P (I|(N1, N2)) is given by (8) based on the derivations
in (9), (10) and (11) and pN1 and pN2 define the probabil-
ities of having N1 and N2 in areas A and B respectively.
Notice again that these probabilities depend on the sizes of
the areas, denoted as |A| and |B|, corresponding to radii Rc

and RI respectively. In the less realistic case, Rc > RI ,
problem formulation is similar – with N1 + N2 being the
number of users that cooperate in sensing, while only N2

being the interfering ones.
To express the efficiency of the cognitive operation we de-

fine the effective cognitive capacity as the ratio of spectrum
resources that are available for cognitive access over the sum
of resources requested by the secondary users, that is:

φ =
min{# free bands, # requested bands}

# requested bands
. (14)

The number of bands available for cognitive use depends on
the total number of sensed bands, M , and the probabilities
of false alarm and missed detection as a result of spectrum
sensing in area A. Consequently, we get:

φ(M, N1, N2) =

=
min{Pr{miss det.|N1}+(M−1)·(1−p

(N1)
fa

),N1+N2}
N1+N2

.
(15)

Similar to (13) the expected effective cognitive capacity φ(M)
is derived by averaging based on the secondary user distri-
butions in areas A and B.

Although it is not shown in (15), φ(M) is also a function of
total sensing time ts, decision threshold γ0 and cooperation
radius Rs, so it is related to all the system design parameters
that we wish to optimize. Finally, our optimization problem
can be formulated in the following way:

find M∗, R∗
c , γ∗

0

maximize φ(M, ts, Rc, γ0)

subject to Pr{I} ≤ P
(max)
I

M ≤ Mmax , ts = Ts,

(16)

where P
(max)
I denotes the interference constraint for the pri-

mary system. In the next section we present evaluation re-
sults that are based on a numerical solution of the above
optimization problem.

4.3 Cognitive network performance
In this section we evaluate how the system parameters af-

fect the cognitive network performance and derive the achiev-
able effective cognitive capacity for various average densities.
Our numerical study is based on the WLAN case study, de-
riving the values for the necessary parameters from Table 1.
The particular value for RI has been chosen based on practi-
cal transmission ranges in WLANs and considering that the
secondary users have similar transmission properties with
the WLAN users of the primary system. Mmax has been
chosen equal to 100 bands while the total sensing time for
all M bands, ts, has now been chosen 2.5ms. Figure 6 illus-
trates the relation between cognitive capacity and the total
number of sensed bands. We observe that the capacity can
have local maximum in the considered range of M . This
happens as even though the actual free capacity increases,
the sensing performance degrades due to shorter sensing pe-
riods for each band, thus increasing false alarm in those
bands. Note that in the unrealistic case that M approaches
the infinity, the network capacity will tend to 1, since then
the probability of interference tends to zero even without
sensing.

In Figure 7 the relation between secondary network den-
sity and effective cognitive capacity is depicted for different
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to average secondary network density.

values of primary system interference bound. We observe
that as user density increases, the effective cognitive capac-
ity reaches a highest point which corresponds to the higher
probability that a secondary user will be allocated a spec-
trum band for cognitive operation at an arbitrary time slot.
For higher densities the sensing improvement is not ade-
quate to satisfy the increasing number of users in the sys-
tem. For lower densities we observe that there exist a point
when capacity is minimized as a result of low sensing qual-
ity. However, as the density further decreases, the existing
users receive a higher capacity because of their low number.
The capacity maximization and minimization points depend
on the system parameters, i.e. the total sensing time and
the maximum number of sensed bands. Finally, we observe
that for high user densities the capacity of the system does
not depend much on the interference bound as a result of
high spectrum sensing efficiency. Based on this result we
conclude that cognitive networks may need to control the
network density, forming parallel sub-networks, each oper-
ating over a different primary frequency range.

5. CONCLUSION
In this paper we addressed the problem of detecting low

power primary signals in order to assist opportunistic spec-
trum access. We considered the scenario where the sensing
process was assigned to the secondary user terminals which
were considered to be randomly located in the designated
area where the primary and secondary networks coexist.
We presented analytical results for spectrum sensing per-
formance with respect to network density and design char-
acteristics and concluded that secondary network density
must be quite high, so as to achieve a good sensing quality.
We then investigated the effective capacity of the cognitive
network and shown that while the highest cognitive capacity
is achieved at high densities, the performance of low density
networks is acceptable as well.
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