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The modeling of wireless network traffic is necessary to evaluate the possible gains of spec-
trum sharing and to support the design of new cognitive protocols that can use spectrum
efficiently in network environments where diverse technologies coexist. In this paper we
focus on IEEE 802.11 wireless local area networks and close the gap between two popular
levels of modeling, macroscopic traffic workload modeling and microscopic channel occu-
pancy modeling. We consider traffic streams generated by established traffic workload
models and characterize the networking scenarios where a simple, semi-Markovian chan-
nel occupancy model accurately predicts the wireless channel usage. Our results demon-
strate that the proposed channel occupancy model can capture the channel idle time
distribution in most of the scenarios, while the Markovian assumption cannot be validated
in all cases.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Spectrum sharing among diverse network technologies
has been introduced as a promising solution to increase the
efficiency of spectrum utilization in wireless environ-
ments, and thus ease the problem of spectrum scarcity.
One of the key components of efficient spectrum sharing
is cognitive medium access control, building on the knowl-
edge of the channel usage patterns of the coexisting
networks [1]. Therefore, traffic workload and channel
occupancy models, either considered to be known [2] or
derived on-line [3], are necessary for protocol design and
channel access optimization. The issue of network coexis-
tence in the open ISM band is particularly relevant due to
the proliferation of diverse low-power wireless technolo-
gies, all sharing the ISM spectrum with the high-power
Wireless Local Area Networks (WLANs). Accurate WLAN
modeling enables these low-power technologies to
alleviate harmful WLAN interference [4] and to ensure an
effective use of the shared open spectrum [5,6].

WLAN modeling can be classified in two main catego-
ries, based on the considered time scale, traffic workload
modeling and channel occupancy modeling. Traffic workload
studies involve stochastic analysis and modeling of high-
layer traffic statistics, such as user arrival and departure
process [9] and client-generated flow statistics [10–12],
the characterization of user traffic [8,13] or the user mobil-
ity [14,15]. In these studies WLAN measurement data is
collected via active probing or passive network monitoring,
followed by the statistical processing of the collected data,
when analytic probability distributions are fitted to the
empirical traces. Traffic workload models are often specific
to a given networking scenario, for example [16] considers
a campus-wide WLAN and provides detailed multi-level,
campus-wide WLAN traffic modeling where both session
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and flow statistics are collected and fitted to analytic dis-
tributions. Although sufficiently realistic, these approaches
capture the behavior of WLANs only at a macroscopic level.

Contrary to traffic workload modeling, channel occu-
pancy studies aim at modeling directly the short term tem-
poral behavior of the channel status in WLAN networks.
They characterize the periods when the channel is either
active due to a WLAN packet transmission, or idle. Clearly,
the distribution of the active times is determined by the
packet sizes used by the applications, while the distribution
of the idle periods depends on both the process of packet
generation and the medium access control. We can distin-
guish between analytic and measurement-based studies,
depending on whether the spectrum occupancy model is
developed based on analytic modeling of user behavior
and network protocols, or it is extracted from channel occu-
pancy measurements. The seminal work in [17] gives an
analytic model for the impact of the IEEE 802.11 MAC pro-
tocol on channel occupancy, and derives the network
throughput of a single Access Point (AP) WLAN assuming
saturated user traffic, i.e. users always have packets to
transmit. The case of a non-saturated single WLAN AP is
studied in [18], modeling the packet arrivals at the users
as a Bernoulli process. In [19] WLAN output buffers are
modeled as M/G/1 queues, resulting in sub-geometric idle
period distribution. The generality of these analytic channel
occupancy models, is, however, limited, since they are
based on specific, simple traffic workload models.

As far as measurement-based approaches are concerned,
in [20] a hyper–exponential distribution is fitted to the
empirical idle period distribution derived by traffic traces
from an area with heterogeneous wireless devices. In [21]
a Markovian channel occupancy model is developed based
on channel measurements extracted from controlled labo-
ratory environments in the 2.4 GHz ISM band. In [22,23]
the heavy-tailed behavior of the idle channel periods is
demonstrated and a mixture distribution is proposed to
capture the two basic sources of channel inactivity, the
short, almost uniformly distributed contention windows
and the long, heavy-tailed white space periods, when the
WLAN users are inactive. The simplicity of the resulting
semi-Markovian model makes it attractive for analytic per-
formance studies and cognitive protocol design [5,23,24].
This model considers an idle period length distribution with
a high number of degrees of freedom and, potentially, good
fitting quality, therefore we select it as the candidate chan-
nel occupancy model. In [22,23] it has been validated for a
limited set of scenarios, under perfect channel conditions
and considering constant UDP payload traffic with expo-
nential packet inter-arrival times. In this paper we evaluate
it for a wide range of traffic patterns and network scenarios
and define the key factors that affect its accuracy. As traffic
traces cannot provide the diversity we are looking for, we
build our evaluation on synthetic traces based on validated
traffic workload models. To investigate the generality of the
model, we select three scenarios with significantly different
traffic workload characteristics, namely, university campus,
conference-hall, and industrial-plant WLANs.

Specifically, we validate the proposed heavy-tail idle
period distribution and the Markovian assumption, that is,
the assumption that consecutive idle periods have inde-
pendent durations. We focus on the idle periods, as the
active period distribution is not significantly affected by
the medium access control, instead, it is directly deter-
mined by the packet sizes in the application mix. The
model validation is completed with an evaluation of its
accuracy considering a restricted dataset of real WLAN
traces.

The main contributions of the paper are summarized as
follows:

(1) Traffic workload and channel occupancy modeling. We
define detailed traffic workload models for the three
networking scenarios, and parameterize the related
semi-Markovian channel occupancy model using
extensive simulations of an IEEE 802.11 AP.

(2) Evaluation of the idle period distribution. We evaluate
the fitting quality of the channel occupancy model,
specifically considering the distribution of the idle
times. Our results indicate that the mixture distribu-
tion proposed in [22,23] is valid in a wide range of
networking scenarios.

(3) Evaluation of the Markovian assumption. We evaluate
the validity of the Markovian assumption consider-
ing the correlation of the consecutive idle time per-
iod lengths. We conclude that the idle period lengths
may be correlated at low or very high load and when
the traffic is highly heterogeneous. Therefore the
Markovian assumption has to be applied with care.

(4) Model validation with real WLAN traces. We evaluate
the fitting accuracy of the semi-Markovian model as
well as the validity of the Markovian assumption,
considering a set of real 802.11 channel occupancy
traces captured in diverse WLAN environments.
The results are similar to the ones with the synthetic
traces, however, they show as well that real
occupancy traces can reflect unexpected traffic
characteristics.

The remainder of the paper is structured as follows. In
Section 2 we review the considered traffic workload and
channel occupancy models. In Section 3 we introduce the
networking scenarios under study, along with a detailed
description of the multi-layer traffic models. The simula-
tion setup, as well as the employed statistical validation
tools are presented in Section 4. Section 5 presents the
results of the channel occupancy model validation using
synthetic WLAN channel occupancy traces, while Section 6
includes the validation over the real WLAN traceset. Sec-
tion 7 concludes the paper.
2. Traffic workload and channel occupancy models

In this section we define the structure of the multi-layer
WLAN traffic workload model and the analytic model for
WLAN channel occupancy that is considered in the paper.
2.1. Multi-layer WLAN traffic workload model

Fig. 1 depicts the structure of the multi-layer traffic
workload model. As suggested by [16], the sessions



Fig. 2. The semi-Markovian channel occupancy model and its two-state
representation.
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(Fig. 1(a)) on the top of the model hierarchy represent the
users of the WLAN. Sessions arrive at the network follow-
ing a stochastic process that is, in general, time-variant. A
session is characterized by the number of traffic flows it
generates (Fig. 1(b)), and by the inter-arrival times between
these flows. The length of the sessions is not part of the
model. A session is considered to be terminated, when its
last flow ends.

A flow is defined as the unidirectional end-to-end
packet sequence from a specific transport-layer source–
destination connection or a media stream. Each flow is
characterized by its size in bytes (Fig. 1(b)), and the in-flow
characteristics given by the sizes, and the inter-arrival
times of the packets (Fig. 1(c)). The in-flow characteristics
depend on the particular network application that gener-
ates the flow [13]. Note that the effect of the medium
access control is not considered in the traffic workload
model.

2.2. Semi-Markovian channel occupancy models

Fig. 2 depicts the IEEE 802.11 WLAN channel occupancy
model, originally proposed in [22,23]. The states of the
semi-Markovian system correspond to the different phases
of the WLAN transmission cycle. The channel is Active
when there is a packet, either Data or ACK, under transmis-
sion. Neglecting the short Inter-frame Space (SIFS) period
between a Data and an ACK packet, due to its considerably
short duration, Data, SIFS and ACK states can be merged
together into a single Active state. In the absence of packet
transmission the WLAN channel is Idle, and we distinguish
between the short back-off idle periods (BK) introduced by
the IEEE 802.11 contention resolution mechanism, and the
significantly longer idle periods due to user inactivity,
denoted as WLAN white spaces (WS). Merging the states
BK and WS into a single Idle state, the model is reduced into
a two-state, semi-Markovian model with holding times
fAðtÞ; fIðtÞ, respectively. As proposed in [22] active periods
are sufficiently modeled as uniform, while fIðtÞ needs to
be described by a mixture distribution, which aims at cap-
turing both of the sources of channel inactivity, that is, the
back-off periods with holding times f ðBKÞ

I ðtÞ and the white
space periods with f ðWSÞ

I ðtÞ. Consequently, fIðtÞ obtains the
form:

fIðtÞ ¼ pf ðBKÞ
I ðtÞ þ ð1� pÞf ðWSÞ

I ðtÞ; t P 0; ð1Þ

with the mixture parameter p 2 ½0;1� defining the probabil-
ity that an idle period is a short back-off.
Fig. 1. The structure of the multi-layer traffic workload model, co
Measurement results in [22] suggest that the back-off
period durations can be modeled with uniform
distribution:

f ðBKÞ
I ðtÞ ¼ 1=aBK; aBK ¼ 0:07 ms; ð2Þ

independently from the network load. Note that aBK is not
the maximum possible back-off period in IEEE 802.11
WLANs, however, higher values appeared rarely in the
measurement set [22]. The white space periods are
suggested to be modeled by a zero-location, generalized
Pareto distribution:

fgPðtÞ ¼
1
r

1þ n
t
r

� ��1
n�1

; ð3Þ

with r and n, being the scale and shape parameters, that
depend on the actual network traffic. To capture the effect
of access-point beaconing, in this paper we consider a
truncated version of (3). As white spaces are limited by
the beacon period, TB:

f ðWSÞ
I ðtÞ ¼ 1

rFgPðTBÞ
1þ n

t
r

� ��1
n�1

; t 2 ð0; TBÞ; ð4Þ

where FgPðTBÞ , Pr½TB 6 t� ¼ 1� 1þ n
r t

� �� ��1=n
. The average

white space duration is:

IðWSÞ ¼
Z TB

0
f ðWSÞ
I ðtÞdt � r

1� n
; if FgPðTBÞ � 1: ð5Þ

Note, that this channel occupancy model considers good
channel conditions without the eventual loss of Data or
ACK packets. Under packet losses, the Active and Idle per-
iod length distributions are slightly different. Specifically,
first, the Active period may not include the ACK packets,
mprising of (a) session-, (b) flow- and (c) in-flow processes.
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and therefore, the Active time distribution is affected by
the packet loss probability. Note, however, that the estima-
tion is still straightforward, since the distribution depends
only on the Data packet sizes in the original traffic mix and
on the packet loss probability. Still, the length of the ACK
packets is very short compared to the size of the majority
of the Data packets. Second, in the case of Data packet loss
ACKs are not transmitted, and the idle period starts with a
short idle time determined by the Net Allocation Vector
(NAV) timer, typically set as the SIFS + ACK duration, in
the order of tens of microseconds, followed by the mini-
mum back-off period. Consequently the maximum of the
back-off period (aBK ) is not affected. The loss affects p,
the ratio of back-off periods, but this is a parameter to be
estimated. Third, if the ACK is transmitted, but not received
correctly, only p is affected due to the packet retransmis-
sion. Consequently, the proposed model fits well also for
modeling the idle-time distribution in scenarios with
transmission errors.

2.3. Validation of the channel occupancy model

We assess the ability of the aforementioned semi-Mar-
kovian channel occupancy model to capture the statistical
behavior of a practical WLAN channel usage, focusing on
the idle time distribution, fIðtÞ. This assessment involves
the following steps:

(1) We generate synthetic traffic streams based on the
traffic workload model in Section 2.1, simulate the
stream transmissions on a IEEE 802.11-compliant
WLAN, and extract the resulting idle time periods
sequence.

(2) Then, using the collected idle period samples, we
determine TB as the maximum idle period sam-
ple,and estimate the parameters of fIðtÞ, that is n
and r, the shape and scale parameters of the general-
ized Pareto distribution, and the mixture p [25].

(3) We preform a detailed statistical analysis over the
simulated and analytic idle period traces to evaluate
the accuracy of the channel occupancy model.

3. Networking scenarios

In this paper we focus on three common WLAN net-
working scenarios, where the traffic workload is expected
to be different:

(1) campus WLAN,
(2) conference-hall WLAN,
(3) industrial-plant WLAN.

3.1. Campus WLAN

To model the traffic demand in the campus WLAN, we
follow the session arrival and flow models of [16]. Table 1
summarizes the proposed distributions and their parame-
ters. As [16] shows the session arrival intensity varies dur-
ing the day. However, it does not change significantly
within the time frame at which traffic modeling is useful
for protocol design and evaluation. Therefore the session
arrivals are modeled by a stationary Poisson process with
parameter value drawn from a truncated geometric distri-
bution to model arrival intensities reported in [16]. Flow
inter-arrival times are log–normal, while the number of
flows per session and the flow sizes are modeled by
heavy-tailed BiPareto distributions.

As [16] does not discuss in-flow characteristics, we cat-
egorize the flows according to [13] as DNS, Web, FTP, P2P,
VoIP, and Video, which gives a highly heterogeneous traffic
mix, and give the probability that a flow belongs to a given
category. We model the DNS flow as the transmission of a
single, uniform-sized packet, since DNS requests and
replies typically have short payload. We characterize the
Web flows with uniform packet sizes and exponential
packet inter-arrival times, accounting for persistent HTTP
connections. FTP flows consist of almost deterministic-size
packets, transmitted back-to-back. To characterize P2P
flows, we follow the suggestions in [26] assuming BitTor-
rent traffic. Finally, we model the VoIP and Video stream
flows considering that they represent Skype traffic and fol-
low the suggestions in [27] on Skype video and voice traffic
flow characteristics. The parameters are summarized in
Table 2.

3.2. Conference-hall WLAN

While several conference-hall traffic workload models
have been proposed, they do not follow the structure pro-
posed in [16]. Therefore, we consider the conference-hall
WLAN model proposed in [7], and convert it to the struc-
ture proposed in [16]. The conference-hall model suggests
that the session arrival process follows the conference time
schedule, and proposes statistical distributions for the
characterization of the session arrival process, the session
durations, and the data rate of a session. It also categorizes
the flows according to applications, and gives the probabil-
ity distribution of the application mix. Table 3 summarizes
the modeling of the traffic workload. Session arrivals are
modeled by an ON/OFF Markov-Modulated Poisson Process
(MMPP), where the ON state represents the beginning of a
conference event. The session durations are Pareto distrib-
uted, while the session data rates are randomly selected
within three different rate intervals, representing light,
medium and heavy traffic, with probabilities pL; pM, and
pH , respectively. Once the rate interval is chosen, the data
rate is uniformly selected inside the given interval. The
application mix is characterized by the probability that a
flow belongs to a given application category and addition-
ally by the portion of the traffic an application category
generates.

While this model includes the notion of a traffic flow
through the definition of the application mix, it does not
give models for the number of flows per session, for the
flow size and for the flow arrival process. We, therefore,
convert the model to the multi-layer traffic workload
model by characterizing the missing model elements as
in [16] and by parameterizing their statistical distributions
in order to fit with the given session, transmission rate and
application mix characterization. For each session we, first,
draw the session duration and the data rate according to
the model parameters proposed in [7], and calculate the



Table 1
Campus WLAN. Traffic workload model parameters.

Traffic object Distribution Parameters

Session
Session arrival (h) Stationary Poisson process (k) 1 (min), 928 (max), 11 (median) trunc. Geometric

Flow
Flow inter-arrival times (s) Log–normal l ¼ �1:6355;r ¼ 2:6286
Flow numbers per session BiPareto a ¼ 0:07;b ¼ 1:75, c ¼ 295:38; k ¼ 1
Flow sizes (bytes) BiPareto a ¼ 0:00;b ¼ 1:02, c ¼ 15:56; k ¼ 111

Application
Web/FTP/P2P PWeb ¼ 0:25; PFTP ¼ 0:12,
VoIP + Video/Other PP2P ¼ 0:33; PVþV ¼ 0:21,

Poth ¼ 0:09

Table 2
Packet size and inter-arrival time distributions for the various network
applications.

Application Packet size
(bytes)

Inter-arrival times (s)

DNS Deterministic
ð512Þ

Single packet

Web Uniform
ð512;1536Þ

Exponential ðk ¼ 10�1Þ

FTP Uniform
ð892;1152Þ

Deterministic ð10�3Þ

P2P Exponential
ðk ¼ 512Þ

Weibull ð0:53;0:13532Þ

VoIP Uniform
ð128;384Þ

MMDP (k;l; T)
k ¼ 0:1;l ¼ 0:1; T ¼ 0:03

Video Uniform
ð384;768Þ

MMUP (k;l;a;b)
k ¼ 0:1;l ¼ 0:1;a ¼ 0:03; b ¼ 0:05

Table 3
Conference-hall WLAN. Traffic workload model parameters.

Traffic object Distribution Parameters

Session
Session arrival

(s�1)
ON/OFF MMPP
[kON; kOFF]

kON ¼ 38�1, kOFF ¼ 0

Session duration
(min)

Pareto n ¼ 0:78;r ¼ 30:76

Session workload
Data rate (kbps) Uniform

light (pL = 0.25), ll ¼ 15;maxl ¼ 60
medium (pM ¼ 0:65), lm 2 ð15� 80Þ,
heavy (pH ¼ 0:1) maxm 2 ð60� 175Þ,

maxh ¼ 175;lh ¼ 80

Application
Web(HTTP,HTTPS,SSH)/
DNS(ICP,ICMP,DNS)

Pfl
Web ¼ 0:62; Pfl

DNS ¼ 0:31

Pfl
oth ¼ 0:07

Pvol
Web ¼ 0:68; Pvol

DNS ¼ 0:11

Pvol
oth ¼ 0:21
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traffic volume (in number of bits) of the session. Given the
traffic volume and the predefined application mix, we first
determine the number of DNS flows, based on our DNS
model in Table 2. Then, from the number of DNS flows
we estimate the number of Web and other flows and the
respective flow sizes, to fit the application mix parameters.
Finally we parameterize the flow inter-arrival time distri-
bution to match the known session duration.
3.3. Industrial-plant WLAN

To construct the traffic workload model for the indus-
trial-plant scenario, we consider an 802.11 network with
a single access point, serving as a backbone for a sensor
network deployed for monitoring and actuation purposes.
The WLAN terminals are fixed and forward sensor data
towards a data-management center, that is, towards the
WLAN AP, and control data to sensors and actuators. To
define the traffic workload, we follow the use case of
[28]. WLAN terminals cover similar areas in the industrial
plant. During normal conditions they receive periodic mes-
sages from the sensors. These messages are first merged
into larger packets at the WLAN terminals and then for-
warded to the WLAN AP. Bursty messages arrive from or
transmitted to the AP during alarms.

Consequently, we construct the multi-layer traffic
workload model as follows. A fixed number of sessions is
used for modeling the stationary WLAN terminals. We
define two kinds of flows for each session. Flows represent-
ing the periodic monitoring traffic to the WLAN AP exhibit
uniform flow inter-arrival times with small support, to
reflect the random delay in the sensor packet aggregation
process. The bursty traffic of alarms is represented by flow
inter-arrival times according to heavy-tailed Generalized
Pareto distribution. For both of the flow types we consider
uniformly distributed flow size, representing the slightly
different amount of information forwarded to or received
from the data-management center. Similarly, we consider
uniform distribution with small support for the packet
sizes and packet inter-arrival times within the flows.
Table 4 summarizes the traffic workload parameters for
the industrial-plant WLAN.

4. Simulations and validation tools

In this Section we describe the simulator framework as
well as the analytic tools that we employ for the validation
of the semi-Markovian channel occupancy model.

4.1. Simulation framework

The considered networking scenarios are simulated on
the NSmiracle [29] platform. In all cases an IEEE 802.11b-
compliant network is built, employing existing NSmiracle
Channel, PHY, MAC and higher layer modules.



Table 4
Industrial-plant WLAN. Traffic workload model parameters.

Traffic object Distribution
Parameters

Session
Session number Fixed N 2 ð5;20Þ

Flow
Flow inter-arrival time (s)

– Monitoring Uniform (a;b) a ¼ 5;b ¼ 90
– Alarm occurrence &
actuation

gPareto (n;r) n 2 ð0:25;0:5Þ,
r 2 ð5;10Þ

Flow size (bytes) Uniform (a;b) a ¼ 512; b ¼ 1536

Packet Statistics
Packet size (bytes) Uniform (a;b) a ¼ 512; b ¼ 1024
Packet inter-arrival time

(ms)
Uniform (a;b) a ¼ 1;b ¼ 10
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We consider a single access point area with a radius of
100 m, inside which 802.11 terminals are uniformly dis-
tributed. The channel propagation model depends on the
considered networking scenario. For the campus WLAN
scenario we assume a path-loss-based channel model with
a moderate exponent value, h ¼ 2:5. The model is
enhanced by log-normal shadowing with standard devia-
tion rshd ¼ 10 dB. For the in-door scenarios of confer-
ence-hall and industrial-plant the channel attenuation is
modeled considering a site-general Indoor ITU model [30]
with power decay N ¼ 38, and zero floor-penetration
attenuation. Unless otherwise noted, we use a simplified
PHY layer, where the user terminal transmits with a fixed
data-rate of 11 Mbps for the industrial-plant scenario,
while for the campus and conference-hall WLAN cases
the rate is inversely proportional to the distance from the
AP, in the 1–11 Mbps interval, to reflect adaptive rate con-
trol. In all cases the MAC follows the IEEE 802.11 standard
with an IPv4 network layer on the top. Flows are transmit-
ted with TCP or UDP according to their traffic type. The Ses-
sion module of the simulator implements the multi-layer
traffic workload model introduced in Section 3. The direc-
tions of the flows are selected randomly, for all cases, apart
from the monitoring traffic flows in the industrial-plant
scenario, which are always directed from the terminals to
the AP.

Furthermore, we implemented a simple protocol stack
for a sensing device. This device is responsible for continu-
ously measuring the spectrum activity, for collecting a
sequence of M samples of idle channel durations, and for
building the empirical distribution function, FIeðt; MÞ. It also
estimates the parameters of the semi-Markovian channel
occupancy model (p; n;r) based on the collected idle per-
iod sequences, applying the MLE estimation algorithm in
[25]. The outcome of the estimation is the analytic distribu-
tion function FIðt; n;r; pÞ of the idle time duration.

4.2. Analytic validation tools

Our goal is to validate the semi-Markovian channel
occupancy model described in Section 2.2, using the statis-
tics of the idle channel durations collected from the simu-
lations with the multi-layer traffic workload model.
We assess the goodness-of-fit by evaluating the D-value
of the Kolmogorof–Smirnoff test, defined as the maximum
absolute difference between the analytic and empirical idle
period distribution functions:

D ¼ sup
s2T

FIðs; n;r;pÞ � FIeðs; MÞj j; ð6Þ

where T is the set of collected idle periods. A low D-value
indicates the good fitting performance of the analytic
model. We underline that the D-value is a worst-case met-
ric, as it considers the supremum of the point-wise differ-
ence between the two functions, instead of the average.

The goodness-of-fit is, additionally, evaluated by per-
forming two-sample Kolmogorov–Smirnoff (K–S) tests [31],
where the collected sequences of idle periods, T , are tested
against synthesized idle period sequences, bT , that are gen-
erated randomly from the estimated analytic distribution,
FIðt; n;r; pÞ. The K–S test assesses the validity of the null
hypothesis, that is, both idle period series can originate
from the same distribution. The test is conducted consider-
ing n randomly selected samples of sequences T ; bT ,
denoted as T n; bT n, respectively. The evaluation is done
by deriving the following two-sample K–S test statistic:

Kn ¼
ffiffiffi
n
2

r
sup

s2T n ;ŝ2bT n

FIeðs; nÞ � FIsðŝ; n; n;r;pÞj j; ð7Þ

where FIs ð̂t; n; n;r; pÞ denotes the empirical distribution of
the synthesized random sequence. We assess the null
hypothesis by calculating the p-Value (pKS) of this test, that
is the probability of obtaining a test statistic, Kn, at least as
extreme as the one we observe. We reject the null hypoth-
esis at a significance level of a 2 ð0;1Þ, if Kn > Ka, where Ka

is the critical value [31] defined as Ka ¼ k : PrfKn > kg < a.
For a deeper understanding of the results of the good-

ness-of-fit tests we show typical examples of empirical
and fitted analytic distributions as well as quantile–quantile
(Q–Q) plots.

In addition to the goodness-of-fit study, we evaluate the
hypothesis that the lengths of the consecutive idle time
periods are uncorrelated, an assumption that is required
for the semi-Markovian channel occupancy model. We
perform a test of independence, by comparing the lag-k
autocorrelation values of the obtained sample sequence
against a sample sequence that approximates well a white
noise series with low auto-correlation. We generate the
white noise reference by sampling the original idle period
sequence with large time gap separations. We repeat the
autocorrelation test using different sub-sequences of the
original sample series. For each test we record the sign of
the difference of the lag-k autocorrelation value of the
empirical sample sequence and that of the white noise
reference. If the samples of the empirical idle-period
sequence are correlated, a large portion of these sign out-
comes will be positive. If the samples of the tested time
series are indeed independent variables, the autocorrela-
tion values of the empirical sample sequence and the white
noise reference bare similar statistical behavior and thus,
the sign of their difference gives a Bernoulli (1/2) trial.
Therefore, to decide on the validity of the null hypothesis
we compute the difference between the positive and



Table 5
In-flow stochastic models.

Distribution Parameters

Packet sizes (bytes)
Uniform ða;bÞ (64,192), (256,768), (768,1280)
Exponential (k) 128 512 1024
Deterministic 128 512 1024
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negative sign outcomes for all tests. We define the p-value
of our test as the probability that a Bernoulli (1/2)
sequence gives the same or larger difference as the
obtained one. That is, the p-value reflects the probability
that the observed correlation metric can occur in a
sequence of independent samples. We reject the null
hypothesis of independence at a significance level a.
Inter-arrival time (s)
Uniform (a;b) ð0:005;0:015Þ ð0:05;0:15Þ ð0:5;1:5Þ
Exponential (1=k) 10�2 10�1 1
Deterministic (l) 10�2 10�1 1
5. Numerical evaluation

5.1. The impact of in-flow characteristics on fitting accuracy

Multi-layer workload models in general and also [7]
characterize the higher-level traffic workload in WLANs,
while the modeling of in-flow traffic is not considered.
Therefore, in the first part of this Section we evaluate the
influence of the in-flow traffic characteristics on the fitting
performance of the proposed mixed uniform-Pareto idle
period distribution. This evaluation will help us conclude
whether the selection of a particular application mix with
application-specific packet size and packet inter-arrival
time distribution can have a significant effect on the fitting
performance.

We consider a single high-level workload configuration,
that is, we generate sessions (session arrival times) and
flows (number of flows per session, flow arrival times
and flow sizes) considering the campus WLAN model
(see Table 1). We use the same workload configuration
for all the experiments. For each experiment we select a
packet size and inter-arrival time distribution pair accord-
ing to Table 5, and perform 50 simulation runs (for all but
the deterministic packet size, deterministic inter-arrival
time case) collecting M ¼ 104 idle period samples within
each run. Table 6 gives the average D-value for each exper-
iment. The D-values are very low for all cases with both
random packet sizes and random inter-arrival times, and
do not seem to depend on the actual parameter value of
the distributions. The mixed Pareto distribution, however,
does not fit well the empirical data under short, determin-
istic inter-arrival times, especially when combined with
deterministic packet size. We evaluate the reason of the
large D-value with the help of Fig. 3, showing the empirical
and analytic idle-period distribution functions for two in-
flow configurations.

Fig. 3(a) shows results with Exponential (k�1 ¼ 512B)
packet size and Uniform (l ¼ 10�2;r2 ¼ 10�5 s) packet
inter-arrival time, exhibiting a D-value = 0.005, while
Fig. 3(b) with Deterministic (1024 B) packet size and
Deterministic (10�2 s) packet inter-arrival time, with
D-value = 0.055. Under deterministic packet size and
packet inter-arrival time the empirical function, FIeðt; MÞ
is dominated by either 802.11 back-off periods, or idle
periods with a duration around 10�2 s, generated between
successive packets inside flows. Apparently, the random
mixing of the deterministic packet streams does not lead
to generalized Pareto distributed idle times in this case.

Based on the results in Table 6 we conclude that the in-
flow traffic characteristics may have an impact on the fit-
ting accuracy, and therefore, the validation of the channel
occupancy model under real WLAN scenarios must take
into account realistic, application-dependent in-flow
models.

5.2. The impact of the networking scenario on the fitting
accuracy

Let us now evaluate the accuracy of the idle time distri-
bution model for the three scenarios introduced in Section 3,
that is, the campus, the conference-hall and the industrial-
pant WLAN, with the multi-layer traffic workload model
parameters summarized in Tables 1, 3, and 4, and the in-
flow parameters in Table 2. We simulate the different sce-
narios with randomized traffic workload parameters and
estimate the parameters of the idle time distribution based
on an input sequence of M ¼ 104 idle period samples,
allowing for a 103-samples warm-up period. Depending
on the length of the active and idle time periods this corre-
sponds to different simulation time durations in the order of
102–103 s. We perform 103 simulation runs for each of the
scenarios.

Fig. 4 shows the parameter space of the idle time distri-
bution of the semi-Markovian model obtained from the
simulations, considering p, the percentage of back-off peri-
ods, and the average estimated white space duration IðWSÞ

defined in (5). The figures show that the three scenarios
present significantly different parameter spaces. Compar-
ing the three scenarios we can identify the significant fac-
tors that affect the accuracy of the channel occupancy
model and determine the model limitations.

5.2.1. Campus WLAN
Fig. 5(a) shows the empirical cumulative distribution

function of the D-value over 103 simulation runs. The dis-
tribution exhibits a low mean, D ¼ 0:0199, and moderate
variance with 95% of the cases being lower than 0.04,
revealing an excellent fitting quality. Fig. 5(b) depicts the
quantile–quantile plot for the collected and the synthe-
sized idle series, averaged over all simulation runs. We
observe that the quantile–quantile curve follows closely
the x ¼ y axis, which indicates that the series of the col-
lected and synthesized idle period samples do come from
the same distribution. This is verified as well by the low
failing rate of the conducted Kolmogorov–Smirnoff test,
shown in Table 7. The average p-value of the test is
pKS ¼ 0:5714, with a coefficient of variation of CpKS

¼
0:0923, while its failing rate is 7:01%, for the standard sig-
nificance level, a ¼ 5%.



Table 6
Expected D-value for the various in-flow configurations.

Packet inter-arrival times (s)

Packet size (bytes) Uniform Exponential Deterministic

10�2 10�1 1 10�2 10�1 1 10�2 10�1 1

U 128 .0122 .0151 .0171 .0205 .0165 .0169 .0945 .0220 .0344
512 .0093 .0115 .0177 .0180 .0136 .0176 .0943 .0508 .0291

1024 .0248 .0144 .0181 .0101 .0144 .0171 .0899 .0196 .0356

E 128 .0169 .0218 .0166 .0170 .0229 .0163 .0706 .0287 .0303
512 .0243 .0217 .0168 .0294 .0221 .0167 .0574 .0418 .0280

1024 .0251 .0409 .0163 .0454 .0416 .0157 .0912 .0476 .0314

D 128 .0140 .0097 .0183 .0114 .0094 .0179 .0676 .0665 .0461
512 .0110 .0105 .0185 .0085 .0092 .0181 .1486 .0817 .0455

1024 .0199 .0113 .0178 .0079 .0111 .0178 .1733 .0362 .0448

I. Glaropoulos et al. / Ad Hoc Networks 21 (2014) 60–83 67
Even though the average fitting quality is satisfactory,
we would like to identify the scenarios when the mixed
uniform-Pareto distribution fails to adequately model the
idle periods. Therefore, we first classify the simulation
results according to the experienced WLAN channel load,
defined as the percentage of the time the channel is in
active state. Fig. 6(a) demonstrates that the channel load
affects the D-value. The fitting accuracy is low in light-
loaded cases, and the fitting is rather weak even at high
load values. This indicates that the idle period distribution
model is more suitable for capturing the channel occu-
pancy statistics for moderate load cases. The empirical
density function of WLAN channel load is shown in
Fig. 6(b). We observe that the cases of extreme channel
load, which result in poor model fitting quality, are rela-
tively rare, and therefore we can conclude that the pro-
posed analytic model is, in general, sufficient for channel
occupancy modeling in campus WLANs.

Fig. 7 shows the fitting quality of the semi-Markovian
model, when the WLAN terminals have higher transmis-
sion rate capabilities, considering the same traffic as for
Fig. 6. We consider fixed, distance-dependent transmission
rate in the 1–54 Mbps range in Fig. 7(a) and (b) and per
packet dynamic rate adaptation in the same range in
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Fig. 3. Examples of fitting performance for different in-flow characteristics
(l ¼ 10�2;r2 ¼ 10�5 s) packet inter-arrival time. (b): D-value = 0.055, Determini
Fig. 7(c) and (d). In both cases the fitting quality follows
a similar D-value – WLAN load trend, as in Fig. 6, indicating
that the transmission rates of the terminals do not signifi-
cantly affect the characterization of the idle channel period
durations. The fitting quality improves slightly under per
packet rate adaptation due to the additional randomization
of active and, consequently, of the idle period lengths. Due
to the high transmission rates we observe a few simulation
runs where the WLAN channel load is relatively low
(1–10%); in these cases the fitting quality is again relatively
weak.

In Fig. 8 we depict the relation between the D-value and
the number of active sessions, that is, all the sessions that
arrive and transmit during the simulation run. Fig. 8(a)
suggests that the number of sessions affects the fitting
quality of the model, with low number of sessions leading
to low fitting quality. As low number of sessions usually
means low load, we evaluate whether the load or the num-
ber of sessions has dominant effect. In Fig. 8(b) we plot the
D-value with respect to the number of sessions, restricting
the study for the cases of low or heavy channel load. As
simulation runs with very low and very heavy load are
rare, we select load regions � 25% and P 45% to include
a reasonable number of runs. We observe that under
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Fig. 4. The resulting parameter space for the idle spectrum period distribution for the three networking scenarios.
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similar channel load, the number of the active WLAN ses-
sions has little impact on the fitting quality, unless both
the network load and the number of sessions are very
low. We evaluate the reason of the high D-value in this
region by comparing the empirical and analytic idle period
CDFs for a simulation run in Fig. 9(a). As we see, the



Table 7
Summary of goodness-of-fit evaluation for the considered networking
scenarios.

D-value pKS CpKS
PfpKS 6 5%g

Campus 0.0199 0.5714 0.0923 0.0701
Conference-hall 0.0088 0.5335 0.0214 0.0467
Industrial-plant 0.0334 0.4029 0.2103 0.0934
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empirical CDF first increases rapidly, but then shows
heavy-tail characteristics. Due to the low number of active
sessions, each with low load, flows rarely overlap in time,
and the idle period distribution is determined by the in-
flow characteristics, that cannot be captured by the gener-
alized Pareto distribution. Fig. 9(a) shows, additionally,
that in low-load cases the percentage of entirely idle bea-
con intervals may be significant, therefore, modeling the
white-spaces with the truncated density in (4) is essential
for achieving high accuracy.

Fig. 10 shows the relation between the D-value and the
level of traffic dispersion among the active sessions. We
define the normalized traffic dispersion, g, as:

g ¼
XN

i¼1

li �
1
N

				
				;

where N is the number of active sessions in the measure-
ment window, and li indicates the ratio of total active dura-
tion due to session i;

PN
i¼1li ¼ 1. Thus, g is zero under

completely balanced traffic, low when the network traffic
is roughly evenly distributed among the sessions, while
high g values indicate unbalanced traffic load. Fig. 10(a)
suggests that unless it is very high, the traffic dispersion
does not have an impact on the fitting quality. However,
as it is shown in Fig. 10(b), dispersion has different effects
in low and in high load regions. For low or moderate
channel load the fitting accuracy degrades with increasing
traffic dispersion. As at high dispersion the large part of the
load is generated by a subset of the sessions, the reason of
the low fitting quality is the same as for the low load – low
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Fig. 6. Campus WLAN. (a) Average D-value with respect to WLAN chan
session number case, that is, the idle time distribution is
determined directly by the in-flow characteristics. Under
high channel load the fitting quality is generally good,
apart from the case of very balanced load. We investigate
the reason of the high D-value in this case in Fig. 9(b).
According to the figure, the empirical and analytic CDFs
do not fit at the back-off period interval. High channel load
together with balanced traffic means that many sessions
access the wireless channel concurrently. This leads to
high level of contention and thus to the exponential
increase of the user back-off window. The assumption of
uniformly distributed back-off period length cannot hold
in this case, which degrades the performance of the fitting.

Finally, we investigate the impact of transmission errors
on the fitting quality. Fig. 10(c) depicts the relation
between the D-value and the MAC error rate, that is the
percentage of packet transmissions, for which an error
has occurred, including a CCA failure, that is, terminated
transmission attempt after maximum back-off, collision
due to hidden terminals, or error in decoding data or ACK
packet due to bad channel conditions. Clearly, the fitting
quality degrades at high error rate. To determine the rea-
sons behind the fitting performance degradation, we plot
in Fig. 10(d) the relation between the MAC error rate and
the fitting quality for different WLAN load regions. Under
low or moderate channel load, the increased MAC error
rate, mainly, due to bad channel conditions, does not have
an effect on the fitting quality. This is because the packet
retransmission scheme of 802.11 does not affect the distri-
bution of the back-off periods and it does not significantly
shrink the channel white spaces. As the channel occupancy
becomes high, the MAC error rate increases mainly
because of CCA failures and collisions due to hidden-termi-
nals, and the increasing D-value reflects that the fitting
quality is low due to the non-uniform distribution of the
back-off periods, as a consequence of the high-load itself.

We can conclude, that in the scenario of a campus
WLAN, the mixture distribution, proposed to characterize
the idle period lengths, is accurate for the typical cases
with moderate channel load. We have observed that the
fitting quality is worse at low load and at low number of
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Fig. 7. Campus WLAN. (a) and (c) Average D-value with respect to WLAN channel load, (b) and (d) empirical density function of the channel load for the
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8 10 12 14 16 18 20 22 24 26 28 30 32
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number of WLAN Sessions

Av
er

ag
e 

D
−v

al
ue

8 10 12 14 16 18 20 22 24 26 28 30 32
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Number of WLAN Sessions

Av
er

ag
e 

D
−v

al
ue

WLAN Load < 25%
WLAN Load > 45%

Fig. 8. Campus WLAN. (a) Average D-value with respect to the number of sessions considering (a) all cases and (b) cases with load below 25%, and above
45%.

70 I. Glaropoulos et al. / Ad Hoc Networks 21 (2014) 60–83



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Idle Period Samples [sec]

C
D

F

Load=5.17%, D−value=0.1014, η=112.09%, ξ=0.1921,
σ=0.029, p=0.3863

FIe(t;M)

FI(t;ξ,σ,p)

0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Idle Period Samples [sec]

C
D

F

Load=50.56%, D−Value = 0.0804, η=69.5%, ξ = 0.2940, 
σ = 0.0103, p=0.6853

FIe(t;M)

FI(t;ξ,σ,p)

Fig. 9. Campus WLAN. Comparison between the empirical and the analytic CDF of the idle channel period durations for a single simulation run, considering
(a) low WLAN load (5.17%), and (b) high WLAN load (50.56%) with low dispersion (g ¼ 69:5%).

75 80 85 90 95 100 105 110 115 120 125
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Normalized Traffic Dispersion [%]

Av
er

ag
e 

D
−v

al
ue

75 80 85 90 95 100 105 110 115 120 125
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Normalized Traffic Dispersion [%]

Av
er

ag
e 

D
−v

al
ue

WLAN Load < 25%
WLAN Load > 45%

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

WLAN MAC Error Rate [%]

Av
er

ag
e 

D
−v

al
ue

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

WLAN MAC Error Rate [%]

Av
er

ag
e 

D
−v

al
ue

WLAN Load < 25%
WLAN Load ∈ (25%, 45%)
WLAN Load ∈ (45%, 55%)
WLAN Load > 55%

Fig. 10. Campus WLAN. Average D-value with respect to the normalized traffic dispersion among the WLAN users considering (a) all cases and (b) cases
with load below 25%, and above 45% and with respect to the MAC error rate, considering (c) all cases and (d) cases with different WLAN load regions.

I. Glaropoulos et al. / Ad Hoc Networks 21 (2014) 60–83 71



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D−value

C
D

F

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

X Quantiles [sec]

Y 
Q

ua
nt

ile
s 

[s
ec

]

Fig. 11. Conference-hall. (a) Empirical distribution function of the D-value. (b) Q–Q plot for the empirical and synthesized idle period series over all
simulation runs.
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sessions or at high level of traffic dispersion among the ses-
sions, because in this case very few packet streams are
aggregated and the in-session flow characteristics deter-
mines the idle period distribution. The fitting quality can
be low even at very high, well balanced load, and under
high MAC error rate, as in these cases the back-off period
model is not accurate enough.
5.2.2. Conference-hall WLAN
As Fig. 4(b) shows, the conference-hall WLAN exhibits a

set of differences compared to the campus WLAN scenario,
with significantly lower variation of the average idle period
length and of the percentage of back-offs across the simu-
lation runs. From Fig. 11(a) we can see, that D-values, in
general, are lower than in the campus WLAN case. As given
in Table 7, their average is D ¼ 0:0088 and this is reflected
in the respective Kolmogorov–Smirnoff test where the
average p-value is 0:5335, but with a low coefficient of var-
iation of 0:0214, and, therefore, a low null hypothesis
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Fig. 12. Conference-hall. (a) Average D-value with respect to WLAN cha
rejection rate equal to 4:67%. Fig. 11(b) with the Q–Q plot
of the collected and synthesized idle period series shows
the same good accuracy, with a good fit up to very high
time values.

As for the campus scenario, let us evaluate how the
load, the number of sessions, the traffic dispersion and
the MAC error rate affect the fitting accuracy. Fig. 12(a)
depicts the relation between the network load and the
resulting D-value. Similarly to the campus WLAN scenario,
the fitting accuracy is weaker at very low network load, but
after that the D-value becomes low and independent of the
load. Moreover, as shown in Fig. 12(b), the WLAN load
ranges, mostly, between 15% and 35%, with the majority
of the simulation runs showing an average load of 20–
25%, a range that is significantly shorter than that of the
campus WLAN case. The fitting quality is very good under
the typical load levels, showing that the analytic idle time
model is adequate in the conference-hall scenario. As
Fig. 13 shows, the fitting accuracy in the conference-hall
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Fig. 13. Conference-hall. Average D-value with respect to (a) the number of sessions, (b) the normalized traffic dispersion among the WLAN users, and (b)
the MAC error rate.
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Fig. 14. Industrial-plant WLAN. (a) Empirical distribution function of the D-value. (b) Q–Q plot for the empirical and synthesized idle period series over all
simulation runs.
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Fig. 15. Industrial-plant WLAN. (a) Average D-value with respect to WLAN channel load, and (b) empirical density function of the channel load.
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case is not affected by the number of sessions or by the
load dispersion. Higher MAC error rates lead to a slightly
decreased fitting quality. However, contrary to the campus
WLAN scenario, both the D-value and the error rates are
relatively low. Error rates are low because packet errors
and hidden terminals are not as frequent due to better
channel conditions – as described in Section 4.1 – while
CCA failures are not present as the load does not reach very
high values. Consequently, the low error rates do not sig-
nificantly affect the fitting accuracy, as discussed earlier
in Fig. 10(d).

Comparing the conference-hall results to the campus
WLAN ones, we can see that the D-values are lower under
similar channel load values, and are less affected by the
level of traffic dispersion. This good behavior follows from
the in-flow characteristics in the conference-hall scenario.
As we can see in Table 3, the traffic is rather homogeneous,
dominated by Web flows, each of them with relatively
long, exponentially distributed packet inter-arrival times.
The mixed uniform-Pareto distribution seems to fit very
well the idle-time distribution resulting from the aggrega-
tion of a high number of such flows.
We can conclude that the proposed channel occupancy
model is accurate for the conference-hall WLAN scenario.

5.2.3. Industrial-plant WLAN
As illustrated in Fig. 4(c) the channel occupancy in the

case of the industrial-plant WLAN resembles the confer-
ence-hall case, with short idle period durations and low
variations in the percentage of back-off idle periods. As
shown in Table 7, the average D-value is 0.0321, higher,
compared to the campus and conference-hall cases. The
average p-value of the K–S goodness-of-fit test is, conse-
quently, the lowest among all cases (0.4029), which,
together with a relatively high coefficient of variation
(0.2103) results in the highest null hypothesis rejection
rate, 9:34%. However, the CDF of the D-value, shown in
Fig. 14(a) and the Q–Q plot in Fig. 14(b) still show a good
fitting accuracy.

Repeating the evaluation process, we investigate
whether the channel load, the number of sessions, the traf-
fic dispersion, or the MAC error rate affect the fitting qual-
ity. As shown in Fig. 15(a), contrary to the conference-hall
case, the fitting accuracy decreases significantly in cases of
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high channel load (Fig. 15(a)), moreover, these cases are
rather frequent, as shown in Fig. 15(b). We compare the
idle period distribution for moderate and high load cases
in Fig. 16. Moderate channel load leads to good fitting
quality (Fig. 16(a)), even though, due to the periodic mon-
itoring traffic, the idle distribution, fIeðt; MÞ is upper
bounded, that is, clearly, non heavy-tailed. Fig. 16(b) eval-
uates the reason for the high D-value under high load. The
empirical CDF diverges from the analytic one at very low
idle period values, showing that, due to the high conten-
tion level, the back-off periods are again non-uniform, as
for the Campus case on Fig. 9(b). We show the empirical
distribution of the idle back-off period sequence in
Fig. 16(c). Under high contention, back-off periods extend
above the maximum value, abk ¼ 0:7 ms, considered in
our model estimation process, which results in fitting error
above abk. However, the larger gap is at the lower time
values, where the back-off period distribution is clearly
non-uniform. To keep the estimation process feasible, we
propose to fit the back-off period distribution with an
exponential-like function, which can resemble the linear
combination of increasing back-off period length, but
requires the estimation of a single parameter. Fig. 16(c)
compares the fitting performance of a left–right truncated
exponential distribution with the standard uniform den-
sity, indicating, clearly, that the former is more capable
of capturing the real behavior of the 802.11 back-off
periods. We have to notice, however, that the estimator
algorithm must be performed after the estimation of the
mixture parameter p, which decreases the achievable accu-
racy. Still, the empirical CDF diverges from the analytic one
even for low white-space period values. We believe that
consecutive contention periods under the rather bursty
traffic of the industrial plant delay the transmission of con-
secutive packets for several time-slots, causing the short
white-spaces to disappear.

As shown in Fig. 17(a), the fitting accuracy degrades as
well with the number of WLAN sessions. However, as in
this case the number of sessions and the network load
are strongly correlated, the reason for the high D-value is
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Fig. 19. Conference-hall. Test for independence for the idle period process. Average p-value and the percentage of p-values below the 5% significance level,
with respect to (a) the WLAN channel load, (b) the number of WLAN sessions, and (c) the normalized traffic dispersion among the sessions.
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the same as at the high-load case above. The normalized
traffic dispersion is low (g 2 ð20—50%Þ), as the monitoring
application generates similar traffic on all WLAN sessions
(Fig. 17(b)), and has little effect on the model accuracy.
According to Fig. 17(c), the MAC error rates can be high,
compared to the campus and conference-hall cases, due
to the higher transmission rate (11 Mbps), that increases
the bit error rate probability at larger terminal-AP dis-
tances. The fitting accuracy degrades with increasing error
rate, as we have seen in the previous scenarios.

To conclude, in the industrial-plant scenario the
channel occupancy model is accurate in many cases, but
the fitting quality depends heavily on the channel load
and the MAC error rate. The mixed uniform-Pareto idle
period distribution can be applied with high confidence
for networks with up to moderate load and less than 10%
MAC error probability.

5.3. Evaluation of the Markovian assumption

Finally, we investigate whether the durations of the
successive WLAN channel idle periods are independently
distributed random variables, which is a fundamental
assumption for the semi-Markovian occupancy model.
For the considered three scenarios we evaluate the effect
of the channel load, the number of sessions and the traffic
dispersion, by applying the test for independence,
described in Section 4.2. We consider lag-1 autocorrela-
tion, unless otherwise noted.

For each scenario we conduct 500 simulation runs with
randomized traffic workload parameters, thus resulting in
different channel load, number of sessions and traffic dis-
persion values. For each simulation run we collect a
sequence of 4 � 104 idle period samples. The long sequence
is divided to 100 intervals of 400-samples length. We con-
struct the white noise reference sequence by selecting one
sample from each interval. In each interval we select ran-
domly one of the first 100 samples, so as to guarantee both
randomness and a minimum time separation of 300 sam-
ples. Then we perform the lag-1 test of independence
within each of the 400-sample intervals, considering the
sub-sequence of the first 100 idle period samples. We
finally calculate the p-value of the test over the 100 inter-
vals. Recall, the p-value reflects the probability that the
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Fig. 20. Industrial-plant WLAN. Test for independence for the idle period process. Average p-value and the percentage of p-values below the 5% significance
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observed correlation metric can occur in a sequence of
independent samples. We reject the null hypothesis of
independence at a significance level of a ¼ 5%. We repeat
the process 100 times by randomizing the starting point
of the sub-sequences within the corresponding 400-
sample intervals, and calculate the average p-value and
the probability that the null hypothesis of independence
is rejected, that is, Pðp-value < 5%Þ.

Fig. 18 shows the average p-value of the independence
test for the campus WLAN scenario, along with the per-
centage of tests with p-value below the 5% significance
level. Fig. 18(a) shows the p-value with respect to the
channel load. Under low or moderate load the test shows
a high failure rate, suggesting that the successive idle
period durations cannot be considered as uncorrelated.
The correlation diminishes at high load values. We
observe similar trends in Fig. 18(c), where the failure rate
is high when the number of sessions is low. Under
light load and few sessions only a few flows are inter-
mixed in the AP area. As flows can have very different
characteristics in the campus WLAN case, the idle period
distribution can change significantly in the event of a
flow arrival or departure; this results in correlated suc-
cessive idle period lengths in parts of the measurement
period. At high load, or, as more sessions are active, more
flows are transmitted in parallel, and the correlation
decreases. Fig. 18(d) shows the results of the indepen-
dence test as a function of the traffic dispersion. Low
level of dispersion typically means several sessions trans-
mitting at an arbitrary point of time, and we experience
good independence properties which deteriorate, as the
traffic becomes less balanced and a few sessions domi-
nate the traffic.

Since the lag-1 correlation is high in many of the con-
sidered cases, it is worth to evaluate how the correlation
changes at increased temporal separation. Fig. 18(b)
presents the results of the independence test when the
autocorrelation is calculated for lag-50 and lag-100. We
observe that the correlation remains significant even
between temporal separation of 50 samples (lag-50), and
it only degrades drastically for lag-100, when the set of
active flows is usually changed. This suggests that idle
periods need to have a high temporal distance to be safely
considered as independent.



1 5 9 13 17 21 25 29 33 37 41 45 49
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

WLAN Channel Load [%]

Av
er

ag
e 

D
−v

al
ue

CAFETERIA

1 5 10 15 20 25 30 35 40 45 50 55 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

WLAN Channel Load [%]

Av
er

ag
e 

D
−v

al
ue

LIBRARY

1 3 5 7 9 11 13 15 17 19 21
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

WLAN Channel Load [%]

Av
er

ag
e 

D
−v

al
ue

PSU CS

1 4 7 10 13 16 19 22 25 28 31 34 37 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

WLAN Channel Load [%]

Av
er

ag
e 

D
−v

al
ue

PIONEER

1 4 7 10 13 17 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

WLAN Channel Load [%]

Av
er

ag
e 

D
−v

al
ue

POWELLS

1 4 7 10 13 16 19 22 25 28 31
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

WLAN Channel Load [%]

Av
er

ag
e 

D
−v

al
ue

UG
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Fig. 19 depicts the p-value of the independence test for
the conference-hall scenario. As shown in Fig. 19(a) and
(b), we observe relatively high p-values, that are only
marginally affected by the channel load or the number of
sessions. The effect of dispersion, as shown in Fig. 19(c),
is similar to the one in the campus WLAN scenario
(Fig. 18(d)), that is, higher traffic dispersion decreases the
p-value which, however, remains at a rather high level.
According to our simulations, the probability of experienc-
ing high dispersion is low, ðPðg > 110Þ < 0:05Þ, and
consequently there are very few test results in the high dis-
persion range. This allows both the p-value and the
hypothesis rejection probability to be around 0.5 in this
range.

In general, the hypothesis on the independence of the
consecutive idle periods may hold in the conference-hall
scenario. Contrary to the campus WLAN case, the majority
of the traffic is from Web flows with identical packet inter-
arrival processes. Additionally, flow arrival intensities are
higher, leading to a high number of concurrent flows inter-
mixed in the AP area; the above reasons result in an aggre-
gated idle period sequence with low autocorrelation.

Fig. 20 presents the results of the industrial-plant sce-
nario. Here the resulting p-values are high, particularly at
low and moderate load cases (which also implies low num-
ber of sessions in this scenario), as a result of the constant
number of sessions and flows with very similar character-
istics (Fig. 20(a) and (b)). The p-value drops at higher load,
when increased contention introduces consecutive back-
off idle periods whose statistical properties differ signifi-
cantly from those of the packet inter-arrival process. The
p-value increases again at very high load, when most of
the idle-periods are back-offs. Finally, Fig. 20(c) indicates
that the idle sequence autocorrelation is almost indifferent
to the level of traffic dispersion, which is expected, since
the traffic dispersion range is very short.

To summarize, the Markovian assumption holds with
high probability in the conference-hall scenario and in
the industrial-plant WLAN, unless the channel load, and
thus the probability of contention are high. In the cam-
pus-WLAN scenario, however, the Markovian assumption
is only justified under high channel load, when a high
number of traffic flows are intermixed. The idle sequence
autocorrelation decreases drastically only for a temporal
separation in the order of 100 samples. Nevertheless, based
on (1) and the experimental results in Fig. 4(a), the corre-
sponding time distance lies below 1 s. This means that
the Markovian assumption can be applied for relevant pro-
tocol design, e.g. in the case of the coexistence of WLANs
and wireless sensor networks with long duty-cycle med-
ium access schemes.
Table 8
Summary of goodness-of-fit evaluation for the considered real trace-based
evaluations.

D-value pKS CpKS
PfpKS 6 5%g

CAFETERIA 0.0322 0.4932 0.0903 0.0783
LIBRARY 0.0356 0.5332 0.1032 0.0888
PSU_CS 0.0414 0.3903 0.1895 0.1439
PIONEER 0.0399 0.4598 0.1421 0.0912
POWELLS 0.0674 0.0694 0.0637 0.5532
UG 0.0388 0.3802 0.1453 0.0941
6. Model validation over real WLAN traces

This Section investigates the ability of the proposed
802.11 channel occupancy model to capture the statistical
behavior of a set of real WLAN channel usage data. We
experiment with a set of real, high time-resolution
802.11 traces, captured with a commercial sniffer device
in diverse WLAN environments [32]. The considered data
set includes traces from campus wireless networks,
namely a campus coffee spot (CAFETERIA), a university
library building (LIBRARY) and a university office building
(PSU_CS), allowing direct comparison with the results with
the synthetic Campus WLAN traffic. The dataset includes,
additionally, traces from a public hot-spot (PIONEER) and
two coffee places (POWELLS, URBAN GRIND (UG)).

The considered traces provide a high (nano-second) res-
olution timing information on packet arrivals and frame-
in-the-air durations as well as MAC control information
including beaconing, and 802.11 control packet transmis-
sions. Thus their level of detail is appropriate for generat-
ing channel occupancy statistics, and, consequently, for
our objective of WLAN channel usage characterization.
For all traces there exists an unfiltered version containing
all frames correctly deciphered by the radio capturing
device as well as a filtered-by-BSSID (‘‘pcap’’) version lim-
iting the captured trace to the traffic associated with the
considered WLAN hot-spot. Note, however, that the
higher-layer traffic characteristics are not known.

As the traces provide idle period sequences that are in
the order of 105 samples, we partition them into shorter
sub-sequences of 4 � 104 samples each. We perform the
model parameterization and fitting validation for all sub-
sequences and extract aggregate statistical results, evalu-
ating both the accuracy of the idle-period fitting, as well
as the validity of the Markovian assumption.

Fig. 21 depicts the fitting accuracy of the trace set with
respect to the average channel load. In the majority of the
cases the trends are similar to the ones with the synthetic
traces. Table 8 summarizes the fitting accuracy results for
the considered traceset. With the exception of the
POWELLS case the proposed modeling of the idle period
duration can effectively capture the statistical behavior of
the idle period traces. This is verified by both the low
D-value (Fig. 21) of the cdf-fitting process, as well as the
low fail rate (Pðp-value < 5%Þ) of the related K–S test.
The resulting Pðp-value < 5%Þ for the LIBRARY and
CAFETERIA complies with the fail-rate evaluated for the
Campus WLAN scenario (Table 7), while for the PSU_CS
case it is higher, due to the significantly lower WLAN load.

Fig. 22 illustrates a comparative fitting example for
sub-sequences taken from the LIBRARY and POWELLS

traces. As shown in Fig. 22(b), the POWELLS trace reflects
a rather unexpected, significant nearly-periodic WLAN
activity, resulting in a high number of WLAN idle periods
around 20msec, which does not allow for an accurate
fitting with the generalized Pareto-based white-space
distribution.
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Fig. 22. Examples of empirical distribution fitting for the LIBRARY and the POWELLS traces.

Table 9
Summary of the test for independence for the idle period process in the
considered real trace-based evaluations

p-Value Pðp-value < 5%Þ

CAFETERIA 0.6592 0.0842
LIBRARY 0.8931 0.0702
PSU_CS 0.3931 0.1977
PIONEER 0.5312 0.0951
POWELLS 0.2921 0.3982
UG 0.1932 0.2830
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Finally Table 9 summarizes the results of the evaluation
of the Markovian assumption. For most of the traces the
resulting fail rates of the test for independence and the
related p-value are comparable to the ones of the synthetic
networking scenarios. As for the fitting accuracy test, the
POWELLS case with its periodic traffic exhibits a high fail.
The fail rate is rather high even for the UG rate, showing
again that the Markovian assumption has to be handled
with care.

7. Conclusions

The modeling of the radio channel occupancy becomes
a key issue for the design of future wireless networks shar-
ing common spectrum bands. In this paper we considered
the special case of IEEE 802.11 WLANs channel occupancy,
since these networks are wide-spread and emerging net-
works have to adapt their access strategies to WLAN
presence.

We addressed the question whether semi-Markovian
channel occupancy models already proposed in the litera-
ture, but validated only for very limited use cases, can be
applied in realistic networking environments. As con-
trolled experiments with large parameter sets are hard to
conduct in real testbeds, we performed our study via sim-
ulations. For the simulations we selected three networking
scenarios, with significantly different traffic workload, the
university campus, the conference-hall, and the indus-
trial-plant. We performed detailed study to evaluate
whether the proposed WLAN channel occupancy model
with heavy-tail idle time distribution and the Markovian
assumption on the independence of the consecutive idle
times are valid.

Considering the proposed idle time distribution, we can
conclude that the accuracy is affected by the traffic mix
and the network load. The white space distribution is sat-
isfactory in most of the cases, however, it is not very accu-
rate when the traffic is very heterogeneous and the load is
low, or under heavy, nearly periodic traffic. The assump-
tion on uniformly distributed back-off periods necessarily
fails under high contention level, for example in cases
where the high MAC error rate and consequent retransmis-
sions moves the network to the high load regime. The
Markovian assumption holds for many of the considered
scenarios, but fails again when the traffic is very heteroge-
neous and the load is low.

Clearly, both the traffic mix and the networking tech-
nology change with time, therefore, it is necessary to dis-
cuss the generality of our results. New services introduce
flows with new in-flow characteristics, and the weight of
the different flow types changes with time. Based on our
results we can predict with confidence, that the proposed
channel occupancy model will hold in future networking
scenarios as well, apart from the cases when the load is
low, with some dominant flows. In those cases the in-flow
characteristics of the dominant flows determines the
idle-time distribution. New networking technologies are
expected to increase the transmission rate in general and
to use efficient physical layer techniques that will increase
spectrum efficiency. As our results show, these changes do
not affect the accuracy of the proposed channel occupancy
model. Power saving options with duty cycling may intro-
duce periodicity in the channel access of some terminals
with low traffic. This will not affect the channel occupancy
characteristics if the aggregate load of the AP is not very
low.
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