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Abstract—Energy efficiency has been the driving force behind
the design of communication protocols for battery-constrained
wireless sensor networks (WSNs). The energy efficiency and the
performance of the proposed protocol stacks, however, degrade
dramatically in case the low-powered WSNs are subject to inter-
ference from high-power wireless systems such as WLANs. In this
paper we propose COG-MAC, a novel cognitive medium access
control scheme (MAC) for WSNs that minimizes the energy
cost for multihop communications, by deriving energy-optimal
packet lengths and single-hop transmission distances based on
the experienced interference from the WLAN. We evaluate COG-
MAC by deriving a detailed analytic model for its performance
and by comparing it with previous access control schemes.
Numerical and simulation results show that a significant decrease
in energy cost, up to 66%, can be achieved in a wide range of
scenarios, particularly under severe WLAN interference. COG-
MAC is, also, lightweight and shows high robustness against
WLAN model estimation and WSN schedule synchronization
errors. COG-MAC is, therefore, an effective, implementable
solution to reduce the WSN performance impairment when
coexisting with WLANs.

Index Terms—WSN, energy efficiency, cognitive networks,
coexistence.

I. INTRODUCTION

THE increasing number of different wireless technologies
sharing the open spectrum bands, such as the 2.4GHz

ISM band, demands for a rethinking of the protocols regulating
the spectrum access. As the medium access control (MAC)
schemes are carefully designed for one given technology, they
are not anymore able to achieve the objective of efficient and
"fair" sharing of the wireless resources when operating under
interference from heterogeneous technologies.

In this paper we consider the specific case of the coexistence
of IEEE 802.11 wireless local area networks (WLANs) and
IEEE 802.15.4-compliant wireless sensor networks (WSNs).
Both technologies apply carrier sensing-based medium access
control with collision avoidance. In addition, WSNs try to
locate the narrow frequency band with less harmful interfer-
ence for their operations. Unfortunately, all these techniques
do not avoid high interference and frequent packet losses in the
WSN, which are mainly caused by the significantly different
transmission bandwidths and powers of the two technologies
competing for the same resource.

As shown in [1], the WLAN terminals operate in a relatively
broad channel and at a higher transmission power than WSNs.
Therefore, they are blind to the narrow-band, low-powered

WSN transmissions, and do not back off when a transmission
is initiated that overlaps with that of the WSN packet being
transmitted. In all this, the WLAN transmissions remain ba-
sically unaffected by the low WSN interference, while WSN
packets are lost. Fortunately, measurement results show that
the WLAN traffic is rather bursty with long white spaces,
when the channel is idle because all WLAN users are inactive
[2]. Therefore, in order to maximize its performance, the WSN
should be able to transmit in these long interference-free times,
being cognitive of the radio environment as imposed by the
WLAN activity.

In this paper we propose and evaluate a new duty-cycled
COGnitive MAC (COG-MAC) protocol for wireless sensor
networks, which extends the IEEE 802.15.4 MAC and aims at
minimising the energy loss due to unsuccessful transmissions
over the interfered channel. Our paper provides the following
contributions. 1) We give a characterization of the WLAN
channel usage patterns as seen by the sensor nodes, taking into
account the nodes’ limited channel estimation capabilities, and
propose techniques for distributed WLAN usage pattern esti-
mation. 2) Based on these results we design COG-MAC, that
optimizes the packet length and the transmission distance, and
performs WLAN activity-aware channel access to ensure that
WSN nodes transmit in the long WLAN white space periods.
3) We provide an accurate analytical model that describes the
probability of COG-MAC packet transmission success. We use
the model to optimize the WSN packet size and the single-
hop WSN transmission distance to minimize the normalized
transmission energy cost metric, which we define as the energy
required to successfully transmit a unit of information over a
unit of distance. 4) We show that all the basic components
of COG-MAC are essential for achieving the objective of
energy efficient communication, and COG-MAC, compared
to previous access schemes, can reduce the normalized energy
cost up to 66%, and can significantly decrease the end-to-end
energy cost in a multihop WSN without increased delay.

The rest of the paper is organized as follows. Related
work is presented in Section II. Section III describes the
networking scenario and the interference and sensing models
and Section IV gives the WLAN channel activity model. In
Section V we describe the proposed protocol stack, followed
by its mathematical analysis in Section VI. In Section VIII
we present a numerical evaluation of COG-MAC along with
a comparison with traditional WSN MAC schemes, while a
simulation study is presented in Section IX. We conclude the
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paper in Section X.

II. RELATED WORK

Energy efficient communications have been extensively
studied for single WSNs operating in some geographical
area [3][4]. The key concept for energy efficiency in sensor
networks is duty-cycling, that is, letting the sensors turn off
their radios whenever idle [5][6][7]. Energy efficiency can
be further improved by the co-optimization of duty-cycle
length, MAC, data link, routing and transport layer protocols
[8][9][10].

It is recognized, however, that cross-network interference
can have significant effect on the network performance, as
it is shown for coexisting WSNs in [11] and for WLAN
and Bluetooth interference in [12][13]. WSN multi-channel
operation aims at avoiding this cross-network interference, or
at minimizing its effect, by letting the network, or the individ-
ual nodes, tune to the best available band for communication
[14][15][16]. These solutions are efficient as long as there exist
channels with no or low interference, but lose effectiveness
when all considered channels suffer from interference with
similar statistical behavior.

Therefore, as wireless channels are getting densely pop-
ulated, it is important to design protocols that can work
efficiently even in the presence of cross-network interfer-
ence. Many of the proposed solutions build on the known
characteristics of the interfering networks. The transmission
characteristics of WLANs is modified in [17] with narrow-
band sensing, with additional HW cost, and in [18], where
the sensors force the WLAN to back off by sending frequent
(one per DIFS), short, high power jamming signals during
their packet transmission, which needs complex PHY layer
and leads to increased energy consumption in the WSN, even
at low WLAN load. Instead, the effect of interference is
minimized without changing the WLAN behaviour in [19]
and [20] introducing packet header and payload redundancy
optimized for known partial collision patterns.

Recent works investigate how to avoid WLAN interference
by employing channel availability predictions. The case of a
non-saturated single WLAN AP is studied in [21], modeling
the packet arrivals at the users as a Bernoulli process. In
[22] a Poisson arrival process is considered, and WLAN
output buffers are modeled as M/G/1 queues, resulting in sub-
geometric idle period distribution. While these models capture
the effect of the WLAN MAC, their generality is limited, since
they are based on simple, rather unrealistic traffic models.

To capture the effect of realistic network load, [2][23][24]
use traffic traces to find the distribution of WLAN idle periods.
These results show that idle periods can be short contention
periods, in the range of hundreds of microseconds, or heavy-
tailed white spaces, where WLAN users are inactive. The
average white space length depends on the WLAN load and
is in the range of tens of milliseconds. In [25] similar results
are derived based on the self-similar nature of WLAN traffic.

Considering the long transmission times in the WSN, it
is important to capture the heavy-tail characteristics of the
WLAN channel usage. Therefore, in our work we apply the

model of [2][26] where a mixture distribution is proposed to
model the idle periods, capturing the two basic sources of
inactivity, the long heavy-tailed white space periods, when the
WLAN users are inactive, and the short contention windows.
Given this WLAN channel usage model we claim that the
WSN on one hand needs to avoid channel access in the
contention windows and on the other hand it needs to optimize
transmissions in the long white space periods [27], which are
the key functions in the proposed COG-MAC.

III. NETWORKING SCENARIO, INTERFERENCE AND
SENSING MODELS, EXTENDED

We consider a WLAN Access Point (AP) zone under which
a IEEE 802.15.4-compliant WSN is deployed. The WSN nodes
are battery-powered and operate on a single 5MHz channel
inside the 2.4GHz ISM band. They transmit information over
multiple hops, and are able to estimate the distance to their
neighboring nodes [28].

WLAN users are distributed inside the AP zone and operate
on a 802.11 22MHz channel, covering the WSN channel. The
WLAN transmission power is in the order of 15-20dBm. The
WLAN terminals are blind to the WSN nodes [25], that is,
the WLAN carrier-sense mechanism does not detect the low-
power WSN signals, which results in collisions, and hence
packet losses in the WSN. On the opposite side, the WSN
nodes transmit with a signal power that is in the order of
0-3dBm [29] and, thus, their impact on WLAN operation is
negligible [23]. Therefore, to ensure efficient WSN commu-
nication, sensor nodes need to consider the WLAN activity
when transmitting. In the remainder of this section we clarify
our assumptions on the interference and sensing models used
throughout the paper.

The signal propagation is assumed to be adequately de-
scribed by a simple path-loss model. In order to correctly
receive a packet, a WSN node needs to receive it with Signal to
Interference plus Noise Ratio (SINR) above a given threshold,
denoted as ζSINR, where the interference is caused by a
single active WLAN transmitter. Considering a WSN pair of
nodes with r being the distance between the transmitting and
receiving sensor. Based on the path-loss attenuation model, the
resulting SINR, assuming a WLAN interferer at distance RI
from the receiving sensor will be

ζSINR =
PWSNPL0

r−η

PWLANPL0
R−ηI + σ2

N

where η is the channel path-loss exponent, PWSN is the
WSN transmission power, PWLAN is the fraction of WLAN
transmission power inside the narrow WSN band, and PL0

and σ2
N denote the attenuation at 1m reference distance and the

noise (AWGN) power, respectively. The WLAN interference
results in WSN packet reception error, if ζSINR ≥ ζSINR. This
results in circular interference zones around receiving sensors,
with radius RI [30]:

RI(r, ζSINR, η, PWSN, PWLAN) = η

√
ζSINRPWLANPL0

PWSNPL0
r−η − ζSINRσ2

N

,

(1)
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Whenever an overlap occurs between a WSN packet trans-
mission and a WLAN transmission within the receiving sensor
node interference zone of radius RI , we assume that the WSN
packet is lost.

The WSN nodes perform channel sensing based on energy
detection through their build-in Receiver Signal Strength Indi-
cator (RSSI) [29]. In the proposed system two kinds of sensing
are performed. Repeated sensing over long periods of time
for WLAN activity model estimation, and short-time sensing
for channel access control. The performance of both kinds
of sensing is bounded by the maximum sensitivity level ψ0

of the sensor, stating the minimum signal level that can be
detected [29]. Short sensing time leads to probabilistic energy
detection, characterised by the probability of missed detection,
pMD, when a signal is not detected, and the probability of
false alarm, pFA, when the sensing results in “signal detected”
decision, even when the channel is idle [31]. The false alarm
probability pFA is a function of the sensing time ts and of
the energy decision threshold γ, and can be calculated as
the probability that the received AWGN energy is above the
decision threshold:

pFA(ts; γ) , Q

(
γ − σ2

N√
2σ4

N/fsts

)
where Q denotes the complementary Gaussian CDF function,
and fs denotes the sampling frequency, thus fs ·ts denotes the
number of samples aggregated at the energy detector [32]. In
this paper we consider a target pFA which gives γ as [31]:

γ(pFA) = max
{
ψ0, σ

2
N

[
1 +

√
2/(fsts)Q−1(pFA)

]}
. (2)

The missed detection probability, pMD, depends on the received
signal power, PRx(d), given as a function of the distance
to the transmitter d, namely, PRx(d) = PWLANPL0

d−η . It
also depends on the decision threshold, γ, which in turn is
determined, using (2), by the target pFA:

pMD(ts, d; γ(pFA)) = 1−Q

(
γ(pFA)− (σ2

N + PRx(d))

σ2
N

√
2/(fsts)

)
.

(3)
During the long-period sensing the sensors keep measuring the
channel to collect samples of active and idle period durations.
Due to the longer sensing time, pFA approaches zero. The
missed detection probability pMD also approaches zero inside
the sensors ACCA, the CCA area, where all transmissions are
detected, and approaches 1 outside the ACCA.

Under the path-loss propagation model the CCA area is
circular; its radius depends on the WLAN transmission power
and can be controlled by tuning the CCA threshold ψ≥ψ0 [29]:

RCCA , RCCA (ψ) =
[
(ψ − σ2

N )/(PWLANPL0
)
]−1/η

. (4)

We derive the COG-MAC performance model considering
path-loss-based channel attenuation. However, the model can
be extended for more generic signal attenuation models, at the
expense of increased analytic complexity. In [33] we give the
extended model, based on channel attenuation enhanced with
log-normal shadowing, and evaluate the effect of shadowing
on the protocol performance in Section VIII.

IV. THE WLAN CHANNEL ACTIVITY MODEL

The WLAN channel activity can be modeled as a semi-
Markovian system of active and idle periods as originally
proposed in [23]. We call this model the Global View, since it
captures the global WLAN activity. Fig. 1(a) depicts the states
of the Global View model and their merging into a two-state
semi-Markovian chain. The states of Data, SIFS and ACK
transmissions are grouped together into a single Active state
and the states that represent the WLAN Contention Window
period (CW) and the WLAN white space (WS) due to user
inactivity are merged into a single Idle state. The distributions
of the active and idle states, fA(t) and fI(t), respectively,
define how long the WLAN channel remains in either state. As
proposed in [23], a uniform distribution in a range [αON, βON]
sufficiently models the active channel periods. The idle dis-
tribution is modeled as a mixture of uniformly distributed
idle periods within [0, αBK], corresponding to the WLAN
contention periods, and long, zero-location generalized Pareto-
distributed idle periods with parameters (ξ, σ) that capture the
heavy-tailed behavior of the white spaces. The percentage of
contention periods p ∈ (0, 1) determines the shape of the
mixed idle distribution, which obtains the following form [23]:

fI(t) , pf
(CW)
I (t) + (1− p)f (WS)

I (t) =

=

 p · 1
αBK

+ (1− p) · 1σ (1 + ξ tσ )−
1+ξ
ξ , t ≤ aBK,

(1− p) · 1σ (1 + ξ tσ )−
1+ξ
ξ , t > aBK,

(5)

while the active distribution is given as:

fA(t) = 1/ (βON − αON) , t ∈ (αON, βON). (6)

We define the WLAN load as the percentage of time the
channel is active due to WLAN operation:

ρ ,
E[TON]

E[TON] + E[TOFF]
=

αON+βON
2

pαBK
2 + (1− p) σ

1−ξ
. (7)

Additionally, this provides the probabilities of active and idle
channel at an arbitrary point in time, pA = ρ and pI = (1−ρ),
respectively.

Our objective is that of estimating the parameters of the
model by means of sensor node observations. To this pur-
pose, we define a Local View model by “extracting” from
the Global View the WLAN channel activity as seen by a
single sensor node. Due to sensitivity limitations the sensors
detect WLAN transmitters only within the CCA area, that is,
they observe the WLAN activity only partially, with some
probability, given by the observable load parameter pCCA.
Assuming uncorrelated consequent WLAN transmissions the
channel activity pattern seen by a sensor can be described
with a 3-state semi-Markovian system, as shown in Fig. 1(b),
distinguishing between detected and non-detected WLAN
activity that occur with probabilities, pCCA and 1 − pCCA,
respectively. Finally, by merging the states at which the sensor
detects an idle channel we obtain the Local View, as a 2-
state semi-Markovian system with the observable sojourn time
distributions fÃ(t) and fĨ(t). It holds that fÃ(t) = fA(t),
but fĨ(t) 6= fI(t), ∀pCCA < 1. The observable idle channel
period consists of a random number of WLAN cycles, that is,
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fĨ(t)

ACTIVE
in

CCA
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Fig. 1. (a): The Global View model with all channel states and the reduced
two-state semi-Markovian model. (b): The 3-state semi-Markovian model and
its 2-state equivalent for the Local View channel usage modeling.

consecutive idle and un-detected active periods, followed by
an additional idle period. Its distribution, fĨ(t), is, therefore, a
random-term convolution-based function of the idle and active
time distributions, fI(t) and fA(t), and of the observable load
pCCA, and can be expressed in closed form only in the Laplace
transform (LT) domain, as shown in [34]:

f∗
Ĩ

(s) = f∗I (s) · pCCA / [1− (1− pCCA)f∗I (s)f∗A(s)] , (8)

where f∗(s) denotes the Laplace transform of function f .
We discuss the feasibility of parameter estimation in [34][35],
where we propose an estimation algorithm that integrates dy-
namically the collected samples, and therefore runs efficiently
on memory-constrained sensor devices.

V. THE COGNITIVE WSN
We propose a WSN COGnitive Medium Access Control

(COG-MAC) that employs WLAN usage prediction and chan-
nel sensing so as to minimize the energy cost for unicast
WSN communication under WLAN interference. In particular,
it aims at minimizing the transmission energy spent by sensors
for communicating.

The operation of COG-MAC is divided into two main
phases. The first one is the estimation and optimization phase,
when a sensor listens to the channel and gathers samples of
the active and idle times, estimates the Local View parameters
and selects the optimal one-hop transmission distance and the
optimal packet size. The second one is the transmission phase,
when the sensor transmits and receives information following
a duty-cycled cognitive MAC protocol, adopting a variant of
the IEEE 802.15.4 MAC. The sensor moves back to the first
phase either periodically, or when it experiences a performance
drop, suggesting that the estimated WLAN activity parameters
are no longer valid (i.e., WLAN activity has significantly
changed).

A. Estimation and optimization

During the estimation phase potential transmitter (TR) and
receiver (RR) sensors listen to the channel and gather active

TR adapted Obs. Load (p̂TCCA)

TR RR
r

WLAN User

x y

RR Obs. Load (pRCCA)

RCCA

AR
CCAAT

CCA

ÂT
CCA

RCCA

R̂CCA

TR Obs. Load (pTCCA)

Fig. 2. TR and RR CCA areas, AT
CCA and AR

CCA, and the adapted CCA area
ÂT

CCA.

and idle times for estimating the WLAN channel activity.
As shown in Fig. 2, they perform the measurements for the
maximized CCA area ACCA (denoted by ATCCA and ARCCA for
TR and RR respectively) by using the maximum sensitivity
level ψ0, leading to RCCA = RCCA(ψ0). Based on these
measurements they derive the Local View parameters, that is,
the parameters of the functions fA(t), fI(t), and pCCA. The
required number of the samples and thus the length of the
estimation phase depends on the target estimation accuracy,
which in turn is determined by the sensitivity of COG-MAC.
Therefore, we discuss this issue in Section VIII.

In addition, for a better estimate of the spatial distribution
of the active WLAN users, each sensor also evaluates p̂TCCA,
the common load it can observe within the overlap of the
CCA areas. Specifically, it measures the load in the disk
area ÂTCCA by filtering the measurements with a changed
sensitivity level ψ, such that for a TR–RR distance r, R̂CCA =
RCCA − r. At the end of the estimation phase the sensors
receive the observable load values from the potential receivers,
denoted by pRCCA. Based on the locally estimated and received
WLAN channel activity model parameters, the sensors select
the transmission parameters that are expected to result in
minimum energy consumption per bit and meter, according
to the model and the implementation given in Section VI.
Specifically, they optimize the packet size, to trade-off the
probability of interference with a new WLAN transmission and
the useful information transmitted per packet. They optimize
the transmission distance, to trade-off the probability that a
new WLAN transmission does not cause harmful interference
and WSN packet transmission can continue even after the
white space period, and the progression towards the multihop
destination.

B. Transmissions with COG-MAC

The estimation and optimization phase is followed by the
transmission phase when actual network operation occurs.
We assume that the WSN operates under duty-cycling to
limit the energy that is spent in idle listening [36][6]. WSN
nodes synchronize their duty-cycles by employing a schedule
synchronization protocol, the actual implementation of which
is out of the scope of the paper. Synchronization gaps are,
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Fig. 3. Time diagram of COG-MAC operations.

however, expected, as a result of CPU clock drift, and have to
be accounted for. Their maximum value tmax

SYNC is determined
by the frequency of synchronization data exchange.

Fig. 3 shows the COG-MAC operation within a duty-cycle
for potential transmitters (TR) and receivers (RR). The duty
cycle of the TR nodes starts with a guard time (denoted as
SYNC in the figure) equal to tmax

SYNC, ensuring that channel
sensing and transmission do not collide due to the lack
of perfect synchronization. The medium access control is a
modified CSMA/CA with the key component of dual channel
sensing. As it is shown in Fig. 3, the on time of the duty
cycle begins with two short channel sensing measurements
with a duration of ts, separated by a time gap of tgap, where
αON ≥ tgap ≥ αBK. If the channel state is correctly detected
as idle at both measurements, the sensors can safely assume
that the spectrum was idle in the entire time and characterize
the idle period as a white space. The operation in the rest
of the cycle is determined by the sensing result. If any of
the measurements have indicated an active state, the sensor
immediately transits to sleep mode to save energy. Sensors
with idle measurements stay instead awake and follow a
CSMA/CA channel access with RTS/CTS exchange. RTS/CTS
has been shown to be beneficial in [27], as it allows TR and
RR to share their view on the channel status, and increases
the probability that the current period is indeed a long white-
space (and not the case when a WLAN station is transmitting
outside the CCA area), as the total observable load includes the
percentage seen by the RR node. We evaluate the usefulness
of RTS/CTS under fixed packet size in Section VIII. Sensors
transit to sleep mode after packet transmission, according to
the employed duty-cycle protocol.

VI. COG-MAC OPTIMIZATION

In this section we define the COG-MAC energy consump-
tion model and formulate the packet size and transmission
distance optimization problem.Then we present the detailed
analytic model of COG-MAC that is required for the optimiza-
tion. In order to focus on the effect of WLAN interference,
we consider the case of low WSN load, when the probability
of sensors competing for the channel is low. The model can
be extended for the high load case, including expected delays
of channel access due to contention resolution.

A. Energy efficiency optimization

COG-MAC consumes energy for computing and storing the
optimal transmission parameters, for packet transmission and
for listening and packet reception. Below we focus on the
energy spent for transmission, as the energy consumption of

computation in typical sensor nodes is at least two orders of
magnitude less than that of communication. For simplicity
we do not consider the energy spent at the receiver (for
listening and reception); the energy model can, however,
be directly extended to include these costs. We consider
the WSN communication energy optimal when the energy
cost of transmitting a unit of information at unit distance
is minimized. Therefore we define the main performance
measure as the energy consumption at the TR until successful
packet delivery, that is, through the sequence of possibly
unsuccessful and eventually successful RTS/CTS handshake
and packet transmission attempts, normalized by the amount
of information transmitted and the distance covered.

We consider a fixed power cost, PWSN
ON , for channel sensing,

transmitting and listening for CTS reception. Consequently,
the TR energy cost of attempting a handshake is ehs =
PWSN

ON ths, where ths is the duration of the handshake. Let T
denote the event of successful handshake. Assuming that the
WLAN channel state is uncorrelated at the consecutive hand-
shake attempts, the number of unsuccessful handshakes has
geometric distribution with parameter P{T , and the expected
energy cost until handshake success becomes:

Ehs(r) = ehs/P{T }. (9)

The energy cost of packet transmission with transmission time
t is, similarly, PWSN

ON t. If a packet transmission attempt fails,
a new handshake must be established before attempting a
new transmission. Consequently, the expected energy cost of
successful packet delivery with packet transmission time t
becomes:

Etrans(r, t) =
[
Ehs(r) + PWSN

ON · t
]
/P{transmission success|T }.

(10)
The theoretical optimal packet length and receiver distance,
t∗, r∗, as a function of the parameters, (ξ, σ, p, pCCA, p̂

T
CCA) is

given by:

(t∗, r∗) = arg min
t,r
{Etrans(r, t) [r · (RWSNt− L0)]} , (11)

where RWSN and L0 denote the WSN transmission rate and
the packet overhead, respectively. (11) can be easily modified
to consider only t or r WSNs with known node distance or
packet size respectively.

We derive the optimal values numerically by solving the
above optimization problems applying the bisection method.
For practical implementation the optimization problem can
be solved a-priori, and the optimal packet size and next-hop
distance pairs for a set of WLAN load parameter vectors can
be stored in the sensor.

B. COG-MAC probability of successful handshake and trans-
mission

In this Section we derive analytically the probabilities of
successful handshake and packet transmission, required in (9),
(10), respectively.

The TR starts a handshake by transmitting an RTS packet, if
its dual sensing process gave idle channel status. Let Î(i)T , Î

(i)
R

denote the events that the i-th channel measurement is idle
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at the TR and RR nodes, respectively, with i = 1, 2. The
handshake attempt is successful if the RR node is awake, as a
result of a pair of idle measurements, and, additionally, if the
communication is not disturbed by an ongoing, miss-detected
WLAN transmission, or by a WLAN transmission that starts
during the period of the handshake within the TR or RR
interference regions. After a successful handshake the packet
transmission itself will be successful, if all WLAN sources
within the interference region of the RR remain silent during
the whole packet transmission time.

WLAN
Status

(S(1), S(2))

TR Idle
Results
Î
(1)
T , Î

(2)
T

Handshake

RR Idle
Results
Î
(1)
R , Î

(2)
R

Synch.
gap
tsync

(a)

WLAN
Status

(S(1), S(2))

TR Idle
Results
Î

(1)
T , Î

(2)
T

RR Idle
Results
Î

(1)
R , Î

(2)
R

Handshake

Synch.
gap
tsync

Transmit

(b)

Fig. 4. Bayesian networks representing the causal relations in the handshake,
(a), and transmission process, (b). With red color are the observed (instanti-
ated) variables, that affect the variables in yellow, but not the ones in green.

The derivation of the probability of successful transmission
is divided into five steps.

1) We define the spatial distribution of WLAN sources, as
seen by the TR node, based on the a priori measured
observable load values and the TR-RR distance r.

2) Using Bayesian inference we derive the probability of
idle and active channel status at the TR and at the RR
nodes, given the observed idle state measurements at the
TR (Fig. 4(a)).

3) We derive the distribution of the interference-free time
that remains after the dual sensing process.

4) Based on the previous steps, we express the probability
of a successful handshake between the TR and the RR
node (Figure 4(a)).

5) Finally, given the successful handshake, we express,
using Bayesian inference, the probability of successful
packet transmission as a function of transmission dis-
tance and packet length (Fig. 4(b)).

Let S ∈ S = {I} ∪ {AXY(x, y) : x ∈ X , y ∈ Y} be the
channel status. The status is either idle, I , or active, AXY(x, y),
with a WLAN source at distances (X,Y ) = (x, y) ∈ X ×Y
from the TR and RR nodes, respectively (see Fig. 2). X ×
Y denotes the set of all possible WLAN source positions.
S(i) ∈ S denotes the channel status during the i-th sensing
measurement, where i = 1, 2. Î(i)T , Î

(i)
R denote the events that

the i-th channel measurement is idle at the TR and RR nodes,
respectively.

1) Spatial distribution of WLAN interfering sources: The
spatial distribution of WLAN sources around the TR and RR
nodes affects their miss-detection probabilities, as well as the

probability that such a source within the TR/RR interference
region starts to transmit during the WSN packet transmission.

As shown in Fig. 2, the TR can estimate the joint distribu-
tion of the distances X ,Y of a possible active WLAN source
based on the a-priori known observable load values, pRCCA,
received from RR, and p̂TCCA, measured by the TR itself. Since
ÂTCCA ⊆ ARCCA, an arbitrary WLAN source lies in the area
ÂTCCA with probability p̂TCCA, in the area ARCCA \ ÂTCCA with
probability pRCCA − p̂TCCA, and in the AP area outside ARCCA
otherwise. Since there is no additional a-priori information
available about the WLAN source locations, the TR assumes
that these sources are located uniformly at random inside the
respective areas. In addition, we approximate the AP area as a
disc around TR with radius Rmax. This approximation does not
affect the model accuracy significantly, unless the TR happens
to be very close to the border of the AP area.

Let fX(x) denote the unconditional probability density
function of distance X , for uniformly random WLAN source
locations in an area around TR, assuming a radius Rmax. Sim-
ilarly, fY |X(x, y) denotes the density of the distance Y from
the RR node, given X=x, and fXY (x, y) = fX(x)fY |X(x, y)
denotes the unconditional joint distance density. These func-
tions depend on the distance r between the two sensors and
can be derived through basic geometry.

We aim at determining the distribution of distances X and
Y , conditioned on the reported observable load values. First,
conditioning on p̂TCCA, we get:

pAX(x) = fX(x) ·


p̂TCCA
νR̂CCA

, x ≤ R̂CCA,

1−p̂TCCA
1−νR̂CCA

, otherwise

where νR̂CCA
, νRCCA denote the ratio of the observable areas

ÂTCCA and ARCCA, respectively, over the total WLAN AP area
with radius Rmax. Conditioned, additionally, on pRCCA, we get
the following expression for the density function of X:

pAX (x) =

= fX(x) ·



p̂TCCA
νR̂CCA

, x ≤ R̂CCA,

FY |X(x,RCCA)(p
R
CCA−p̂

T
CCA)

νRCCA−νR̂CCA
+

+
FY |X(x,RCCA)(1−pRCCA)

1−νRCCA
, otherwise.

(12)

Similarly, the conditional distance density pAY |X (x, y), can be
expressed as:
pAY |X (x, y) =

fY |X(x, y) ·


p̂TCCA
νR̂CCA

, x ≤ R̂CCA

pRCCA−p̂
T
CCA

νRCCA−νR̂CCA
, x>R̂CCA, y ≤ RCCA

1−pRCCA
1−νRCCA

, otherwise,

(13)

and the joint probability function, pAXY , as:

pAXY(x, y) = fX(x) · pAY |X (x, y). (14)

The density function of the distance Y is finally determined
as the marginal density of the joint function pAXY :

pAY (y) =

∫
X
pAXY(x, y)dx. (15)



7

2) Bayesian inference of channel status: We derive now
the posterior distribution of channel status,

(
S(1), S(2)

)
, given

the observed TR idle measurements, applying Bayesian formu-
lation. Conditioned on the idle channel measurements at the
TR, the channel status distribution is determined by the false
alarm and missed detection probabilities, which in turn depend
on the distance between the TR and the active WLAN source.

To calculate P{
(
S(1), S(2)

)
|Î(1)T , Î

(2)
T } we use the follow-

ing decomposition:

P{
(
S(1), S(2)

)
|Î(1)T , Î

(2)
T } =

= P{S(1)|Î(1)T , Î
(2)
T } · P{S(2)|S(1), Î

(1)
T , Î

(2)
T } =

= P{S(1)|Î(1)T } · P{S(2)|S(1), Î
(2)
T }.

(16)

Conditioned on the first idle measurement the channel status
is either idle or active with the following probabilities:

P{I(1)|Î(1)T } =
(1− pFA)pI∫

X pMD(u)p
A

(1)
X

(u)du+ (1− pFA)pI
, (17)

P{A(1)
X |Î

(1)
T } =

pMD(x)p
A

(1)
X

(x)∫
X pMD(u)p

A
(1)
X

(u)du+ (1− pFA)pI
(18)

P{A(1)
XY|Î

(1)
T } =

pMD(x)p
A

(1)
XY

(x, y)∫∫
XY pMD(u)p

A
(1)
XY

(u, v)dudv+(1−pFA)pI
(19)

where p
A

(1)
X

(x) = pA ·pAX (x) is the probability that a WLAN
source is active at a distance x from the TR at the time of the
first measurement, and p

A
(1)
XY

(x, y) = pA · pAXY(x, y) is the
probability that it is active at distances x, y from TR and RR
respectively.

To derive the second term of (16), we first express the status
transition probabilities, P{S(2)|S(1)}, following Fig. 5.

For I(1) (Fig. 5(a),(c)):

P{I(2)|I(1)} = FRI (tgap), (20)

P{A(2)
XY|I

(1)} =
(

1− P{I(2)|I(1)}
)
pAXY(x, y). (21)

In the above, FRI (t) denotes the distribution function of the
remaining idle time, TRI , As the time of the first measure-
ment is uniformly distributed within the WLAN idle period:
FRI (t) =

∫∞
t

(1− t
z )fI(z)dz. Similarly, for S(1) = A

(1)
XY, ∀x, y

we obtain (Fig. 5(b)):

P{I(2)|A(1)
XY} =

∫ tgap

0
F I(tgap − z)fRA(z)dz, (22)

with fRA(t) =
∫∞
t

1
z fA(z)dz denoting the density of the

remaining active WLAN period. For S(2) = A
(2)
XY(x, y) we

need to distinguish between the cases of a continuous active
period – with the same WLAN source being active – or that
of a short idle period between the measurements (Fig. 5(d)):

P{A(2)
XY|A

(1)
XY(x1, y1)} = FRA(tgap)δ(x1, y1)+

+[1− FRA(tgap)− P{I(2)|A(1)
XY}]pAXY(x, y)

(23)

Finally, we define the channel status probabilities condi-
tioned on the second idle measurement and based on the a-
priori status transition probabilities calculated in (20)-(23):

tI , fI(t) (white space)
tA, fA(t)

ts ts
tgap TRf |I(1), I(2), fRf |I(1),I(2)(t)

a)
(I(1), I(2))

tI , fI(t)
tA, fA(t)

tA, fA(t)

ts ts

tRA TRf |A(1), I(2), fRf |A(1),I(2)(t)

b)
(A(1), I(2))

tA, fA(t)tI , fI(t) tI , fI(t)

tcycle
tA, fA(t)

tsts
tRI

TRf |I(1), A(2), fRf |I(1),A(2)(t)

c)
(I(1), A(2))

tA

ts ts

tI , fI(t)
tA, fA(t)tA, fA(t)(tI)

Possible back-off period

TRf |A(1), A(2), fRf |A(1),A(2)(t)tgap

d)
(A(1), A(2))

Fig. 5. Diagram for the calculation of remaining time densities.

P{I(2)|I(1), Î(2)T } =

= (1−pFA)P{I(2)|I(1)}
(1−pFA)P{I(2)|I(1)}+

∫ ∫
XY pMD(u)P{A(2)

XY |I(1)}dudv
,

(24)

P{A(2)
XY |I

(1), Î
(2)
T } =

(
1− P{I(2)|I(1), Î(2)T }

)
pAXY(x, y),

(25)

P{I(2)|A(1)
XY , Î

(2)
T } =

=
(1−pFA)P{I(2)|A(1)

XY }
(1−pFA)P{I(2)|A(1)

XY }+
∫ ∫
XY pMD(u)P{A(2)

XY |A
(1)
XY }dudv

,
(26)

P{A(2)
XY |A

(1)
XY (x1, y1), Î

(2)
T } =

=
pMD(x)P{A(2)

XY |A
(1)
XY (x1,y1)}

(1−pFA)P{I(2)|A(1)
XY }+

∫ ∫
XY pMD(u)P{A(2)

XY |A
(1)
XY }dudv

.
(27)

3) Conditional remaining interference-free time: We define
TRF , T (TR,RR)

RF
as the total interference-free time remaining at

the RR sensor and at both the TR and RR sensors, respectively,
after the sensing process at the nodes, and derive the densities
fRF |S(1),S(2)(t), f (TR,RR)

RF |S(1),S(2)(t), given the channel status at
the time of the TR measurements.
TRF includes the interval between the end of the second

sensing measurement and the start of the following active
WLAN period, and a geometric number of successive WLAN
cycles, i.e. pairs of successive active and idle WLAN periods
with density fC(t) = fI(t) ∗ fA(t), representing WLAN
transmissions outside the interference area.

Consequently, the distribution of TRF can be numerically
calculated with the help of Laplace transformation, similar to
(8) and for all S(1), S(2) ∈ S:

fRF |S(1),S(2)(t) = L−1
{

pIN f
∗
Rf |S(1),S(2)(s)

1− (1− pIN )f∗I (s)f∗A(s)

}
, (28)

For additionally undisturbed TR, we obtain the density:

f (TR,RR)
RF |S(1),S(2)(t) = L−1

{
p(TR,RR)
IN f∗

Rf |S(1),S(2)(s)

1− (1− p(TR,RR)
IN )f∗I (s)f∗A(s)

}
,

(29)



8

where pIN , the probability that an activated WLAN source
interferes with the RR reception is:

pIN =

{
pRCCA(RI(r)RCCA

)2, RI(r) ≤ RCCA

pRCCA + (1− pRCCA)
R2
I(r)−R

2
CCA

R2
max−R2

CCA
, otherwise, (30)

and the probability that the source lies, additionally, inside the
TR interference area is given as:

p(TR,RR)
IN =

∫
y≤RI(r)

∫
x≤RI(r) pAXY(x, y)dxdy. (31)

The interval between the end of the second sensing mea-
surement and the start of the first active WLAN period is
denoted by TRf , and its density depends on the channel
status. In the derivations we approximate the sensing period
as Ts = 2ts + tgap ≈ tgap, since tgap � ts.

For
(
I(1), I(2)

)
(Fig. 5(a)) we safely classify the idle period

as white space, and consequently:

fRf |I(1),I(2)(t) = fRI (t+ tgap)/FRI (tgap). (32)

In the case (A
(1)
XY, I

(2)) (Fig. 5(b)), a transition from active
to idle status occurs sometime z ≤ tgap after the first TR
measurement, and the idle period may also be a back-off,
which gives:

f
Rf |A(1)

XY ,I
(2)(t) = 1

FRA (tgap)

∫ tgap

0
fRA(z)

fI(t+tgap−z)
F I(tgap−z)

dz. (33)

For S(2) = A
(2)
XY (Fig. 5(c)) the channel is active at the

second measurement, and the remaining time, TRf , is given
by the remaining active and the following idle period:

f
Rf |I(1),A(2)

XY
(t) = 1

FRI (tgap)

∫ tgap

0
fRI (z)

fC(t+tgap−z)
FA(tgap−z)

dz. (34)

Finally under (A
(1)
XY , A

(2)
XY ) (Fig. 5(d)), the active period

may be continuous between the two measurements, or inter-
rupted by a short idle time. In the case of continuous active
period:

f
Rf |A(1)

XY (x1,y1),A
(2)
XY (x1,y1)

(t) =

= 1
FRA (tgap)

∫∞
tgap
fRA(z)fI(t+ tgap − z)dz,

(35)

while in the case of a short idle period between the measure-
ments, (x1, y1) 6= (x2, y2):

f
Rf |A(1)

XY ,A
(2)
XY

(t) = 1
FRA (tgap)

·

·
∫ tgap

0
fRA(z1)

∫ tgap−z1
0 fI(z2)
FI(tgap−z1) ·

fcycle(t+tgap−z1−z2)
FA(tgap−z1−z2)

dz1dz2.
(36)

4) TR-RR handshake success: For a TR node aiming
at communicating with an RR at distance r we calculate
the probability of successful handshake, conditioned on the
idle TR measurements. Let T denote the event of handshake
success. T requires, first, idle measurements at the receiver,
Î
(1)
R , Î

(2)
R . Second, it requires that no WLAN transmission

interferes with the RTS/CTS handshake. Since the duration
of the handshake is expected to be significantly lower than
the WLAN activity dynamics, we approximate the second
constraint as the requirement that all the possible active
WLAN sources lie outside the interference regions of both
the TR and the RR for the entire handshake period, ths:

P{T |S(1), S(2)} = P{Î(1)R , Î
(2)
R |S

(1), S(2)}F (TR,RR)
RF |S(1),S(2)(ths).

(37)
We begin with the case when the TR and RR duty cycles

are perfectly synchronized. If the channel status is indeed
idle during both of the TR measurements, i.e., (S(1), S(2)) =
(I(1), I(2)), the handshake is successful if there is no false
alarm at the RR, and the remaining interference-free time at
both the RR and TR is longer than the total duration of the
handshake, ths. That is:

P{T |I(1), I(2)} = (1− pFA)2F
(TR,RR)
RF |I(1),I(2)(ths). (38)

With a similar reasoning, the conditional handshake success
probability for the remaining channel status cases becomes:

P{T |A(1)
XY(x, y), I(2)} =

= (1−pFA)pMD(y)F
(TR,RR)
RF |A(1)

XY ,I
(2)(ths), x ∈ X , y ∈ Y

(39)

P{T |I(1), A(2)
XY (x, y)} =

= (1−pFA)pMD(y)F
(TR,RR)
RF |I(1),A(2)

XY
(ths), x, y ≥ RI(r),

(40)

P{T |A(1)
XY(x1, y1), A

(2)
XY(x2, y2)} =

= pMD(y1)pMD(y2)F
(TR,RR)
RF |A(1)

XY ,A
(2)
XY

(ths), x2, y2 ≥ RI(r).
(41)

The probability of handshake success is then calculated by
averaging over all possible cases. (Eq. (42) on the top of next
page.)

Let us, now, account for the possible synchronization offset
between the schedules of the communicating sensors, de-
scribed by the stochastic density fsync.

In case the channel is idle during both TR measurements,
(S(1), S(2)) = (I(1), I(2)), the sensing occurred in a white
space period. Since the average duration of a white space
is at least two orders of magnitude higher than the SYNC
period in the WSN, it is unlikely that the RR conducts its
first channel measurement outside the discovered white space
period. Therefore, the handshake success probability can be
approximately calculated as in (38).

For the other cases, however, due to the synchronization gap
the TR and the RR may sense at different channel status. Let
us consider that the channel status at the TR is (S(1), S(2)) =

(A
(1)
XY , I

(2)).
First we compute the probability of the event(
Î
(1)
R , Î

(2)
R

)
|A(1)

XY, I
(2), z of idle RR measurements when the

channel status transition occurs at time tRA = z after the first
TR measurement (Fig. 5(b)). We have

g(z) , P{Î(1)R , Î
(2)
R |A

(1)
XY, I

(2), z} =

=
∫ tmax

sync
0 P{Î(1)R , Î

(2)
R |A

(1)
XY, I

(2), z, t}fsync(t)dt,
(43)

where P{Î(1)R , Î
(2)
R |A

(1)
XY, I

(2), z, t} denotes the probability of
RR idle measurements when the synchronization offset is t.

The durations of the active and idle periods before and after
the change of the channel status are independent, so we can
write:

P{Î(1)R , Î
(2)
R |A

(1)
XY, I

(2), z, t} =

= P{Î(1)R |A
(1)
XY, I

(2), z, t} · P{Î(2)R |A
(1)
XY, I

(2), z, t},
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P{T |Î(1)T , Î
(2)
T } = P{T |I(1), I(2)}P{I(1), I(2)|Î(1)T , Î

(2)
T }+

∫∫
XY P{T |A

(1)
XY(x, y), I(2)}P{A(1)

XY(x, y), I(2)|Î(1)T , Î
(2)
T }dxdy

+
∫∫
x,y≥RI(r) P{T |I

(1), A
(2)
XY(x, y)}P{I(1), A(2)

XY(x, y)|Î(1)T , Î
(2)
T }dxdy

+
∫∫
XY
∫∫
x2,y2≥RI(r) P{T |A

(1)
XY(x1, y1), A

(2)
XY(x2, y2)}P{A(1)

XY(x1, y1), A
(2)
XY(x2, y2)|Î(1)T , Î

(2)
T }dx1dy1dx2dy2

(42)

where:

P{Î(2)R |A
(1)
XY, I

(2), z, t} =

{
pMD(y), z ≥ tgap − t,
1− pFA, otherwise,

and

P{Î(1)R |A
(1)
XY, I

(2), z, t} ≈ (1−pFA)FA(t+z)+pMD(y)FA(t+z)

FA(z)
,

where with the approximation we ignore the probability of the
unlikely event of having an extremely short back-off period
between the TR and RR’s first sensing measurement. Finally,
the probability of handshake is calculated as:

P{T |A(1)
XY(x, y), I(2)} =

tgap∫
0

P{T |A(1)
XY(x, y), I(2), z}dz,

(44)
where the conditional probability reduces to the product:

P{T |A(1)
XY(x, y), I(2), z} = g(z) · F (TR,RR)

RF |A(1)
XY ,I

(2),z
(ths).

The above conditional interference-free distribution,
F

(TR,RR)
RF |A(1)

XY ,I
(2),z

(.) is calculated from (29), by substituting
f
Rf |A(1)

XY ,I
(2)(t) with

f
Rf |A(1)

XY ,I
(2),z

(t) =
1

FRA(tgap)
fRA(z)

fI(t+ tgap − z)
F I(tgap − z)

.

We skip the derivations for the remaining channel status cases
as the calculation methodology is similar.

5) Successful packet transmission: Finally, let us express
the probability of successful packet transmission, now condi-
tioned on the success of the handshake (Fig. 4(b)).

We update all (S(1), S(2)), through Bayesian inference:

P{S(1), S(2)|T } = P{S(1), S(2)|T , Î(1)T , Î
(2)
T } =

=
P{T |S(1),S(2),Î

(1)
T ,Î

(2)
T }P{S

(1)S(2)|Î(1)T ,Î
(2)
T }

P{T |Î(1)T ,Î
(2)
T }

=

=
P{T |S(1),S(2)}P{S(1)S(2)|Î(1)T ,Î

(2)
T }

P{T |Î(1)T ,Î
(2)
T }

,

(45)

where P{T |Î(1)T , Î
(2)
T } is defined in (42), the terms

P{T |S(1), S(2)} are derived in the previous Section and
P{S(1), S(2)|Î(1)T , Î

(2)
T } is derived from (16).

Similarly, we update the total remaining interference-free
time, TRF , with respect to the total length of the handshake
time, including the synchronization delay, tThs = ths + tSYNC,
as it is measured by the TR node:

FRF |(S(1),S(2)),T (t) =

= P{TRF ≥ t+ tThs|T
(TR,RR)
RF

≥ tThs} =

=
P{TRF≥t+t

T
hs ,T

(TR,RR)
RF

≥tThs}

P{T (TR,RR)
RF

≥tThs}
≈

F
RF |(S

(1),S(2))
(t+tThs )

F
(TR,RR)

RF |(S
(1),S(2))

(tThs )
,

(46)

where the respective density functions are given in (28) and
(29), and the approximation is valid due to the relatively short
handshake time with respect to the WLAN spectrum duty
cycle.

Finally, from (42) and (46) we express the probability
that a packet of transmission duration t will be successfully
transmitted as:
P{transmission success|T } =

=
∑
FRF |(S(1),S(2)),T (t)P{S(1), S(2)|T , Î(1)T , Î

(2)
T },

(47)

where the summation is over all possible channel status
S(1), S(2).

C. COG-MAC performance over a shadowing channel model

This Section presents the required modifications on the
analytic model of COG-MAC performance in order to derive
the probability of successful transmission using a channel
model that is extended with shadowing-based attenuation.
In the following we describe the required channel model
modifications and we revise the derivation steps presented in
the above Section to account for the channel shadowing.

1) Shadowing model: The model that describes the signal
attenuation over a wireless link is enhanced with a log-
normally distributed shadowing gain. That is, the received
signal power at distance d from a WLAN active source is
given as

PRx(d) , PRx(d, ζ) = PWLANPL0
d−η10ζ/10 (48)

where Z is a zero-mean Gaussian variable with standard
deviation σsh, that is

fZ(ζ) =
1

σsh
√

2π
e
− ζ2

2σ2sh

while the other parameters and factors have been explained in
Section III. (48) is, additionally, used to derive the received
power on the TR-RR link. We assume that the shadowing
gains of the existing WSN communication or interference links
have independent realizations. Considering the interference
model of Fig. 2 we denote by ZT , ZR, ZT-R the shadowing
gains of the corresponding links, that is, between the WLAN
source and the TR and RR nodes, and over the TR-RR link,
respectively.

As a result, the instantaneous interference radius at the TR
and RR nodes with respect to the shadowing realizations will
be given as follows:

RTR
I (r, ζSINR, η, PWSN, PWLAN) ,

, RTR
I (r, ζSINR, η, PWSN(ζT-R), PWLAN(ζT)) =

= η

√
ζSINRPWLANPL0

10ζT/10

PWSNPL0
r−η10ζT-R/10−ζSINRσ2

N

,

(49)
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RRR
I (r, ζSINR, η, PWSN, PWLAN) ,

, RRR
I (r, ζSINR, η, PWSN(ζT-R), PWLAN(ζR)) =

= η

√
ζSINRPWLANPL0

10ζR/10

PWSNPL0
r−η10ζT-R/10−ζSINRσ2

N

,

(50)

In addition, we make the simplifying assumption that the
shadowing realizations are constant within the short period
of a WSN duty cycle. Consequently, the performance of both
the short-period channel sensing and of the WSN transmission
depends on the instantaneous shadowing gains. While the false
alarm proability is unaffected, the missed detection probability
is now given by integrating Eq. (3) over the shadowing density:

pMD(ts, d; γ(pFA)) ,
∫∞
0
pMD(ζ)fZ(ζ)dζ =

= 1−
∫∞
0
Q
(
γ(pFA)−(σ2

N+PRx(d,ζ))

σ2
N

√
2/(fsts)

)
fZ(ζ)dζ,

(51)

where Z ∈ {ZT, ZR}. Shadowing gains, additionally, affect the
radius of observable WLAN occupancy, which in accordance
with Eq. (4) will be given by

RCCA , RCCA (ψ) =

(
ψ − σ2

N

E [PWLAN]PL0

)−1/η
, (52)

where the expected signal power will be

E [PWLAN] = PWLAN · 10σ
2
sh/2.

(52) is used to calculate both observable radii, namely,
RCCA, R̂CCA.

2) Spatial distribution of WLAN interfering sources: The
a-priori spatial distributions, fX(x), fY |X(x, y), of the WLAN
interfering transmitters inside the AP area do not depend on
shadowing, as they consider no sensing information and can
be calcuated with basic geometry, as discussed in Section VI.
Shadowing, however, affects the a-priori spatial distributions,
pAX (x), pAY |X (x, y), which are defined in (12)–(14), since
the observable load is no longer restricted inside a fixed CCA
area. Under shadowing, RCCA and R̂TCCA are not any more
well-defined. In the following we show how pAX (x) can be
derived, assuming an observable load pTCCA at the TR node.
We have the following decomposition:

pAX(x) , P{WLAN at dist. x} =

= P{WLAN at dist. x|belongs to det. load}·
·P{belongs to det. load}+
P{WLAN at dist. x|belongs to non-det. load}·
·P{belongs to non-det. load}

(53)

where, clearly, P{belongs to non-det. load} = 1− pTCCA, and
P{belongs to det. load} = pTCCA. Using Bayesian inference,
we derive the conditional probabilities in (53) as follows:

P{WLAN at dist. x|belongs to det. load} =

= 2x (1− pMD(x)) /
∫
X 2u (1− pMD(u)) du,

(54)

P{WLAN at dist. x|belongs to det. load} =

= 2x pMD(x)/
∫
X 2u pMD(u)du.

(55)

In the absence of shadowing, pMD(u) is binary, and (53)
reduces to (12). The rest of the derivations are similar. (53)

reflects that additional uncertainty in the a-priori information
about the possible locations of the WLAN interferers, as a
result of channel shadowing.

3) Bayesian inference of channel status: The posterior dis-
tribution of WLAN channel status given the idle measurements
at the transmitting sensor, P{S(1), S(2)|Î(1)T , Î

(1)
T }, depends on

the probability of missed detection (Eq. (51)), which is now
a function of the shadowing gains on the interfering links.
However, as the dependence is only through pmd, the posterior
channel status can still be given by Eq. (17)–Eq. (19) and
Eq. (24)–Eq. (27).

4) Conditional remaining interference-free time: Condi-
tioned on the channel status

(
S(1), S(2)

)
∈ S the remaining

times TRf (Fig. 5), whose densities are defined in Eq. (32) –
Eq. (36), do not depend on the shadowing gains of the links.

However, this does not hold for the total interference-free
times, TRF , T

TR-RR
RF

defined in Eq. (28) – Eq. (29), as they
depend on the probability that the following active WLAN
active period will interfere with the WSN communication,
pIN , p

(TR,RR)
IN (Eq. (30), Eq. (31)), which are functions of the

shadowning gains. To this end, we extend pIN as a function
of the shadowing gains to pIN (ζR, ζT-R) by substituting RI(r)
in (30) with the expression in (50). Similarly, we extend
pTR-RR
IN as a function of the shadowing gains ζT, ζR, ζT-R, that

is, pTR-RR
IN (ζT, ζR, ζT-R) by substituting RI(r) in (31) with the

expression in (49). Finally, we average over the shadowing
gains of the interfering links, that is

pIN (ζT-R) =

∫ ∞
0

pIN (ζR, ζT-R)fZRdζR (56)

pTR-RR
IN (ζT-R) =

∞∫
0

∞∫
0

pIN (ζT, ζR, ζT-R)fZT(ζT)fZR(ζR)dζTdζR.

(57)
FTR|S(1),S(2) , F TR-RR

TR|S(1),S(2) are, then, functions of ζT-R.
5) TR-RR handshake success: The calculation of the

probability of successful handshake depends on the shadowing
gains through both the missed detection probability and the
remaining interference-free time. In particular, the expression
in Eq. (38) must be integrated over ζT-R applying the ex-
pression in (57) on the total remaining interference-free time.
The expression in Eq. (39) must, instead, be integrated over
ζR, ζT-R, and extend pMD(y) to pMD(y, ζR) (Eq. (51)).

For the cases when a WLAN source is active at the point
of the second measurement (Eq. (40), Eq. (41)), the remaining
interference-free time and missed detection events are coupled,
so the events of successful handshake are integrated over
all shadowing gains, ζT, ζR, ζT-R, and must, additionally, be
multiplied by pTR-RR

IN (ζT, ζR, ζT-R), i.e. the probability that the
active WLAN source at the point of the second channel
measurement does not interfere with the TR-RR handshake
process. We, finally, apply (42) to determine the probability
of handshake success.

6) Successful packet transmission: Given the event of suc-
cessful handshake, the posterior probabilities of channel status
are calculated similar to (45) but, additionally, as functions of
the shadowing gain over the TR-RR link, ζTR-RR. The updates
of the total remainining interference-free time are done as in
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WLAN
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(S(1), S(2))

TR Idle
Results
Î
(1)
T , Î

(2)
T

Transmit

RR Idle
Results
Î
(1)
R , Î

(2)
R

Synch.
gap
tsync

Fig. 6. Bayesian network, representing the causal relations of events during
packet transmission without RTS/CTS handshake.

(46) where pIN (ζT-R) is extended to pTR-RR
IN (ζT-R) as discussed

above. In order to derive the probability of successful packet
transmission with respect to packet transmission time and
next-hop distance, we must, finally, integrate (47) over the
shadowing gain ζT-R.

D. COG-MAG modeling without the RTS/CTS handshake
mechanism

In the absense of the RTS/CTS handshake, a packet trans-
mission is attempted by the TR directly after the back-off
period (Fig. 3). As a result, the probability of successful packet
reception depends only on the conditional interference-free
time seen by the TR node, given the pair of idle measurements.
The situation is illustrated in Fig. 6. The analytic model
modifications for the COG-MAC probability of successful
packet tranmission without the RTS/CTS mechanism have
been given in detail in our earlier work [27], Eq.(13)-(15).

VII. CSMA & RAND MODELING

We present here the analytic models for the legacy 802.15.4-
compliant (CSMA) and Random Access (RAND) MAC pro-
tocols, that are required for the performance evaluation in
Section VIII. Similarly to Section VI we, first, derive the
probability of successful transmission with respect to the TR-
RR distance and to the packet length. We then proceed with the
calculation of the energy consumption considering the repeated
TR-RR handshake and transmission attempts that are required
for each transmitted packet. Based on the derived energy
consumption models we are able to formulate the optimization
problems for CSMA and RAND similarly to (11) and derive
for each protocol the optimal packet size and transmission
distance that minimize the energy cost of transmitting one
bit ofinformation under the given WLAN channel occupancy
conditions.

A. CSMA: Probability of successful transmission

The process of deriving the probability of successful trans-
mission is similar to the one for COG-MAC, described in VI-B
with the exception of having a single channel measurement
at each duty-cycle. In this Section we describe in detail the
required changes in the derivation steps as a result of the

single channel energy measurement. We can omit the super-
script (i) for the events of channel status, S, and node idle
measurements, ÎT , ÎR, due to the single measurement instant.
The Bayesian networks representing the causal relations in the
node handshake and packet transmission process are given in
Fig. 7.

WLAN
Status
(S)

TR Idle
Result
ÎT

Handshake

RR Idle
Result
ÎR

Synch.
gap
tsync

(a)

WLAN
Status
(S)

TR Idle
Result
ÎT

RR Idle
Result
ÎR

Handshake

Synch.
gap
tsync

Transmit

(b)

Fig. 7. Bayesian networks representing the causal relations in the handshake,
(a), and transmission process, (b), for the CSMA (single measurement)
case. With red color are the observed (instantiated) variables, that affect the
variables in yellow, but not the ones in green.

The derivation of the spatial distribution of the WLAN
interfering sources (Step 1) is identical to the COG-MAC case
(Section VI-B1). Applying Bayesian formulation we derive in
Step 2 the posterior distribution of the channel status con-
ditioned on the single TR idle measurement, P{S|ÎT }, S =
I, AXY, using Eq. (16)–(19) (Section VI-B2), omitting the time
index.

In Step 3 we calculate the total interference-
free time densities, fRF |S(t), f (TR,RR)

RF |S (t), similarly to
fRF |S(1),S(2)(t), f

(TR,RR)
RF |S(1),S(2)(t) in Section VI-B3 (Eq.

(28)–(29)):

fRF |S(t) = L−1
{

pIN f
∗
Rf |S(s)

1− (1− pIN )f∗I (s)f∗A(s)

}
, (58)

f (TR,RR)
RF |S (t) = L−1

{
p(TR,RR)
IN f∗Rf |S(s)

1− (1− p(TR,RR)
IN )f∗I (s)f∗A(s)

}
, (59)

The probabilities pIN , p
(TR,RR)
IN are calculated as in Eq. (30)–

(31), while the density fRf |S(t) is calculated as follows:
For S = I (Fig. 8(a)) we simply have fRf |I(t) = fRI (t),

where fRI (t) denotes the density of the remaining idle time,
TRI defined in Section VI-B2, while for S = AXY (Fig. 8(b))
we have fRF |AXY(t) = fRA(t) ∗ fI(t).

The process of calculating the probability of successful
handshake (Step 4), in the case of perfect synchronization,
resembles the one for COG-MAC, where (37) is reduced to:

P{T |S} = P{ÎR|S}F
(TR,RR)
RF |S (ths). (60)

and the set of Equations (38)–(41) is reduced to:

P{T |I} = (1− pFA)F
(TR,RR)
RF |I (ths), (61)
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tI , fI(t)
tA, fA(t)

ts
TRf |I , fRf |I(t)

a) I

tA, fA(t) tI , fI(t)
tA, fA(t)

ts
TRf |A, fRf |A(t)

b) A

Fig. 8. Diagram for the calculation of remaining time densities for the CSMA
modeling.

P{T |AXY(x, y)} =

= pMD(y)F
(TR,RR)
RF |AXY

(ths), x ∈ X , y ≥ RI(r).
(62)

Finally, the probability of handshake, P{T |ÎT }, is calculated
over all possible cases, similarly to (42):

P{T |ÎT } = P{T |I}P{I|ÎT }+

+
∫ ∫

x,y≥RI(r) P{T |AXY(x, y)}P{AXY(x, y)|ÎT }dxdy
(63)

We consider now the case of imperfect TR-RR synchroniza-
tion. Due to the synchronization gap the TR and the RR may
sense at different channel status. Consider, first that S = AXY.
As in Section VI-B we aim at computing the probability of
the event ÎR|AXY, z of an idle RR measurement, when the
channel status transition occurs at time tRA = z after the TR
measurement (Fig. 8(b)). (43) is reduced to:

g(z) , P{ÎR|AXY, z} =

tmax
sync∫
0

P{ÎR|AXY, z, t}fsync(t)dt, (64)

where we have:

P{ÎR|AXY, z, t} =

{
pMD(y), z ≥ t,
1− pFA, otherwise.

The probability of handshake is, now, calculated by reducing
(45) to

P{T |AXY(x, y)} =

tgap∫
0

g(z) · F (TR,RR)
RF |AXY,z(ths)dz, (65)

The calculation of the handshake probability when S = I is
skipped as it follows the same methodology.

Finally, let us express the probability of successful packet
transmission, now conditioned on the success of the handshake
(Fig. 7(b)). The probability of the spectrum status is updated
through Bayesian inference similarly to (45):

P{S|T } = P{S|T , ÎT } = P{T |S,ÎT }P{S|ÎT }
P{T |ÎT }

=

= P{T |S}P{S|ÎT }
P{T |ÎT }

,
(66)

whose terms have all been calculated above. The Equations
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Fig. 9. (a) Comparison of Cognitive and CSMA-based MAC over p and
σ, and (b) normalized energy cost with respect to p for fixed WLAN Load
(ρ = 16% and 60%)

(46)–(47) are, finally, reduced to:

FRF |S,T (t) =

= P{TRF ≥ t+ tThs|T
(TR,RR)
RF

≥ tThs} =

=
P{TRF≥t+t

T
hs ,T

(TR,RR)
RF

≥tThs}

P{T (TR,RR)
RF

≥tThs}
≈ FRF |S(t+t

T
hs )

F
(TR,RR)
RF |S

(tThs )
,

(67)

P{transmission success|T } =

=
∑
S=AXY,I

FRF |S,T (t)P{S|T , ÎT },
(68)

The derivation of energy-optimal receiver distance, r∗, and
packet size, t∗, resembles the one for COG-MAC in Section
VI-A.

B. RAND: Probability of successful transmission

Under the simplistic random access MAC the communicat-
ing nodes do not perform carrier sense and RTS/CTS hand-
shake. Therefore, the probability of successful transmission
of a packet with transmission time t at a receiving node at
distance r equals the probability that the total interference-
free time, TRF , exceeds the transmission time, t:

P{transmission success}(r, t) =

= pIP{TRF |I ≥ t}+
∫ ∫

x,y≥RI(r) pApAXY(x, y)·
·P{TRF |AXY(x, y) ≥ t}dxdy

(69)

Similarly to the CSMA case, the total interference-free time
densities are conditioned on the spectrum status, S, at the
beginning of the duty-cycle, and, therefore, have the form of
Eq. (58)–(59). The same applies for the densities fR|S(t), S ∈
{A, I}. The derivation of the spatial density pAXY(x, y) follows
the procedure in Section VI-B.

Under the RAND scheme the expected energy cost of
successful packet delivery does not include the energy cost
for TR-RR handshake, and, therefore, (10) is reduced to:

Etrans(r, t) =
PWSN

ON · t
P{transmission success(r, t)}

. (70)

The derivation of energy-optimal receiver distance and packet
size is conducted as in Section VI-A, substituting (70) in the
optimization problem (11).
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TABLE I
PARAMETER SETUP FOR THE PERFORMANCE EVALUATION

Channel Model
Path-Loss Exponent (η) 3.0
Ref. Distance attenuation (PL0 ) Isotropic (λ/(4π)))2

Noise Power (σ2
N ) -174 dB/Hz

WLAN Properties & Modeling
Bandwidth (BWLAN) 22MHz (802.11x Channel)
Tx-Power 18dBm (22MHz Channel)
Tx-Power inside WSN band (PWLAN) 12dB
Max. back-off period (αBK) 700µsec
Active period interval (αON, βON) (0.8msec, 1.5msec)
White space Pareto scale (ξ) 0.3095
WSN & CC2420 Properties
Bandwidth (BWSN) 5MHz Zigbee Channel
Tx-Power (PWSN) 1dBm
Tx-Rate (RWSN) 250kbps
Header Length [Packet overhead] (L0) 13 bytes
RTS/CTS Length 6 bytes
Minimum SINR (ζSIR) 5dB
Receiver Sensitivity (ψ) -100 dBm
RSSI Dynamic Range 100dB
Tx/Rx Power Consumption (PWSN

ON ) 55mW
Handshake Duration (ths) 768µsec
Channel Sensing Model
Sampling Frequency (fs) 5MHz
Sensing Time (ts) 16µsec
False Alarm Constraint (pFA) 10−2

VIII. NUMERICAL PERFORMANCE EVALUATION

We evaluate the performance of COG-MAC, based on the
analytic model in Section VI, by comparing it to duty-cycled,
non-cognitive WSN MAC schemes. In particular, we consider
an ALOHA-type Random Access MAC (RAND), where sen-
sors transmit at the beginning of the duty-cycle without any
channel sensing before transmission, and a standard 802.15.4-
compliant carrier-sense (CSMA) MAC scheme, where WSN
nodes perform the standard channel sensing and RTS/CTS
handshake. The analytic models for RAND and CSMA are
similar to that of COG-MAC and are not presented here due
to space limitation. Interested readers can find them in [33].
For all the three schemes we consider the normalized energy
cost metric under optimized transmission distance and packet
size as defined by (11). The default parameters of our reference
evaluation scenario are listed in Table I.

A. Comparison with RAND & CSMA schemes

Fig. 9(a) compares the normalized energy cost of COG-
MAC and CSMA with respect to the parameter p, the percent-
age of short WLAN back-off intervals, and E

[
I (WS)

]
= σ

1−ξ ,
the average length of white spaces, controlled by the shape
parameter σ of the generalized Pareto distribution. We set
the observable load at the receiving sensor at pRCCA = 0.5.
To consider random transmitter location we randomize p̂TCCA,
following a normalized binomial distribution, in [0, pRCCA]. In
general, increasing p or decreasing E

[
I (WS)

]
increases the

load and consequently the normalized energy consumption
for both protocols. Fig. 9(a), however, shows that COG-
MAC significantly outperforms CSMA. In Fig. 9(b) we keep
the load constant at ρ = 16% and 60%, and increase the
percentage of the back-off periods p. Even in this case COG-
MAC shows better normalized energy consumption compared
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Fig. 10. (a) COG-MAC – CSMA comparison with respect to the normalized
energy cost under log-normal shadowing and (b) fixed packet lengths.
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Fig. 11. Normalized energy cost with respect to the percentage of the
observable WLAN spectrum activity (pCCA).

to both CSMA and RAND. The energy cost of COG-MAC is
only marginally affected by the growing percentage of back-
off periods. In contrast, RAND and CSMA, due to the fact
that they have to optimize transmission parameters for the
mixture idle time distribution, cannot provide energy efficient
communication for a large range of p.

1) Impact of channel shadowing: Fig. 10(a) compares
COG-MAC to CSMA under log-normal shadowing channel
model and for various shadowing standard deviation (σsh)
values. Shadowing on the wireless channel degrades the WSN
communication energy efficiency as it adds uncertainty in
both the WLAN spatio-temporal model estimation and the
interference calculation, and the degradation is significant for
COG-MAC at high WLAN load. Still, the large performance
gap between the two solutions remains.

2) Impact of the RTS/CTS handshake mechanism:
Fig. 10(b) compares the efficiency of COG-MAC with and
without RTS/CTS exchange under increasing WLAN channel
load – decreasing average white-spaces duration – and for
fixed and optimized WSN packet lengths. We observe that
RTS/CTS is always beneficial under optimized packet lengths.
For fixed packet sizes the effect of RTS/CTS handshake
depends on the WLAN load. Under high load values, that
is, under short expected white-space durations, the increased
performance due to efficient white-space discovery is limited,
thus, it does not compensate for the additional overhead of the
RTS/CTS mechanism.

3) Impact of the receiver observable load: Let us now
investigate the effect of the observable load pRCCA on energy
efficiency. Fig. 11 compares the CSMA and COG-MAC nor-
malized energy cost as a function of pRCCA and for different
p and E

[
I (WS)

]
values. For the CSMA scheme (Fig. 11(a))
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Fig. 12. Normalized energy cost with respect to the absolute of error in
p-estimation, [p̂− p]. E

[
I (WS)

]
= 36msec (σ = 0.025).
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Fig. 13. Normalized energy cost with respect to the percentage of error in
σ-estimation, [(σ̂ − σ)/σ]. p = 80%.

the energy cost increases monotonically with the observable
load, since the interference-free time decreases. We can see
similar trends for COG-MAC for low p values in Fig. 11(b).
On the contrary, at high p value the COG-MAC energy cost
decreases at high pRCCA, because in these scenarios COG-
MAC can efficiently filter the short back-off periods. As a
result, COG-MAC can provide energy efficient communication
despite the limited sensing range, and can decrease the energy
cost with up to 66% compared to CSMA.

4) Sensitivity to the model parameters: COG-MAC may
not be able to use optimal packet size and transmission
distance due to imperfect WLAN Local View parameter esti-
mation and due to the limited number of options that can be
stored in the look-up table in the sensor memory. Therefore we
evaluate the effect of estimation errors, considering the p and
σ values. (The results for the other Local View parameters are
similar.) Fig. 12 shows the effect of the imperfect estimation of
p, for low and high p values. We can see that COG-MAC is not
sensitive to estimation error, unless p is heavily overestimated,
since the dual sensing filters out the back-off periods. On the
contrary, CSMA and RAND need to taking the short back-off
periods into account for the optimization, and therefore the
imperfect estimation of p deteriorates their performance.

Fig. 13 depicts the sensitivity of the performance on the
estimation of σ, the shape parameter of the white space
distribution. For the considered scenario CSMA and RAND
are not sensitive to estimation errors due to the high p value
that makes the estimation of the actual WLAN white spaces
less important. COG-MAC, however, transmits in the white
spaces only, and therefore the over- and underestimation of σ
leads to increased energy consumption. Still up to 50% error
in estimating σ does not have significant effect on the energy
cost. Based on [34], this level of accuracy can be achieved by
considering 100-1000 idle period samples. This in turn leads
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Fig. 14. Normalized communication energy cost with respect to increasing
WLAN load (decreasing expected white-space duration), for different average
synchronization offsets. E

[
I (WS)

]
= 60msec.

to an estimation time in the order of 1-10 seconds, depending
on the average lengths of the idle periods. The low sensitivity
to estimation errors allows even the use of look-up tables with
low granularity. These confirm that the proposed approach
with local channel estimation and parameter optimization
based cognitive access is a viable solution for sensor networks.

B. The effect of loose synchronization

In Fig. 14 we evaluate the energy cost of COG-MAC
considering the case of imperfect synchronization of the TR
and RR duty cycles, based on the model in [33]. We con-
sider synchronization gaps uniformly distributed in (0, tmax

sync),
E[tSYNC] = tmax

sync/2. We show the effect of E[tSYNC] on
the normalized COG-MAC energy cost as a function of the
WLAN load, for low and high p values. Since the shifted
double sensing procedures require more time, synchronization
gaps decrease the probability of successful handshake and
reduce the interference-free time for packet transmission, and
therefore can increase the energy cost, as demonstrated in
Fig. 14(a). Fig. 14(b), however, shows that for high p values
and low network load synchronization gaps may slightly
improve protocol performance. The time-shift of the TR and
RR sensing times increases the chance of detecting a WLAN
transmission after undetected active period and back-off time,
and consequently increases the probability that the transmis-
sion happens in WLAN white space. All in all, synchronization
offsets in the order of 100µsec have only a slight impact on
the protocol performance.

IX. A SIMULATION STUDY OF COG-MAC

The model-based evaluation in Section VIII is subject to the
following assumptions that we have introduced to simplify the
modeling:

1) The WLAN sources are uniformly distributed around
the sensors. The actual spatial distribution of WLAN
sources differs from uniform due to edge effects and
since the number of the sources in an AP area is limited
and their mobility is low.

2) The consecutive handshake and packet transmission at-
tempts in COG-MAC observe independent WLAN chan-
nel status. This assumption of statistical independence is
valid as long as the duration of WSN duty-cycle is long



15

enough compared to the dynamics of the WLAN activity
model.

To simplify the derived analytical expressions, we made two
approximations in the model (presented in the supplementary
material). In (37), to simplify the expression of handshake suc-
cess probability, we introduce the approximation that WLAN
sources must remain silent inside the interference areas of
both the TR and RR nodes during handshake, which slightly
underestimates the handshake success probability. Also, in
(46), the approximation of the interference-free time after
handshake becomes rough unless the average interference-free
time is relatively long compared to the handshake period.

We present, here, a simulation study of COG-MAC, where
the above assumptions and approximations are removed. The
comparison between numerical and simulation results will
show whether the considered approximations in favor of
analytic tractability are valid. In addition, we evaluate the
time-stability of the protocol, and discuss its performance in
multihop networks.

A. Implementation and Simulation Scenario

We simulate the coexisting networks in the NS-Miracle
framework [37]. For the WLAN nodes we use the already
implemented 802.11b compliant protocol stack. For the WSN
nodes we have implemented a customized Physical Layer
module that includes the SINR threshold-based packet recep-
tion model, as described in Section III, along with the energy
detection-based dual channel sensing and a Medium Access
Control module that implements the state machine of COG-
MAC. WSN packet losses trigger retransmissions, occurring
at consecutive duty cycles with a default value of 50msec.

We consider a single WLAN AP area with a limited set of
wireless terminals (WTs), operating in the high SNR regime.
We inject WLAN traffic by generating a packet stream that
creates a sequence of idle and active periods that follow the
proposed parameterized Global View model, and assign the
packets to the WTs and the AP independently at random.
To simulate a practical case we allocate 50% of the injected
packets to the AP, while the rest are assigned uniformly at the
WTs. In the WSN we simulate the single hop communication
of a TR-RR sensor pair, separated by the optimal transmission
distance r, and transmitting packets of optimal size. We
consider saturated buffer to minimize simulation time.

Each simulation experiment with a particular TR-RR dis-
tance, r, consists of 100 simulation runs, for each of which
the TR is randomly placed on the circumference of the circle
with radius r around the RR to achieve the randomization
of p̂TCCA (Fig. 2); the results are, then, averaged over those
100 runs. Each simulation run terminates when the TR sensor
completes the transmission of 500 packets, or, alternatively,
when the simulation time exceeds 1000 seconds.

B. Model Validation

We aim at validating the derived analytic model of COG-
MAC by comparing its numerically calculated energy effi-
ciency in Section VIII with the resulting efficiency evaluated
through simulations.
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Fig. 15. (a) An example of a topology realization for the model validation
study where the detection and interference areas are illustrated for a single
TR-RR communicating pair. (b) A topology realization with fixed AP, WT
and RR locations. Receiving node sRi observes i ∗ 10% of WLAN load.
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Fig. 16. Comparison between numerical and simulation results for COG-
MAC under various p,σ parameterization sets.

We perform controlled experiments for a limited set of pairs
(p,E

[
I (WS)

]
) as follows. For each experiment we first place a

single RR sensor uniformly at random at a distance lower than
RCCA from the AP and deploy 10 WTs uniformly at random
outside the ARCCA. Thus the RR observes 50% of the WLAN
traffic (pRCCA = 0.5). We determine the optimal distance r
and the packet size for possible p̂TCCA values by the optimal
solution of (11), and place the TR randomly in a valid position.
Fig. 15(a) illustrates an example of a topology realization. To
achieve statistical averages we randomize the location of the
RR and the 10 deployed WTs for each simulation run within
each experiment. The energy cost is calculated based on the
number of the handshake and transmission attempts that each
packet experiences.

In Fig. 16 we present comparative results for the normalized
energy cost as it is predicted by the analytic model and as
it is evaluated in our simulator. The comparison is done in
Fig. 16(a) with respect to p and in Fig. 16(b) with respect to
increasing WLAN load, ρ, by decreasing the expected white
space durations. We observe in both figures a slight overes-
timation of the communication energy cost by the analytic
model; the general conclusion, however, is that the model
sufficiently captures the performance of the designed COG-
MAC. The numerically evaluated performance of CSMA is
also plotted for the sake of comparison.

Let us now evaluate the effect of the length of the WSN
duty-cycle on COG-MAC performance, and thus the accuracy
of the modeling assumption of independent WLAN channel
status at the consecutive dual sensing events.
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Fig. 17. (a) Handshake and transmission attempts with respect to increasing
percentage of back-off periods, parameterized by the WSN duty-cycle du-
ration, (b) Packet delivery delay with respect to WSN duty cycle duration.
Expected WLAN white space duration: Ī(WS) = 36ms.

We consider the average per packet handshake and transmis-
sion attempts, and the average delay from the first handshake
attempt to successful packet delivery, for duty-cycle periods
from 15ms to 100ms. For the expected WLAN white space
duration we choose a moderate value of 36msec, and tune p
to change the WLAN load. In Fig. 17(a) we observe that as
the WSN cycle duration increases above 50msec, the simulated
performance matches closely the performance predicted by the
analytic model, and for 100ms the performance difference is
negligible, as the time between successive handshake or trans-
mission attempts is long enough for COG-MAC to experience
statistical independence. Similarly, Fig. 17(b) shows that the
average delay grows linearly with the cycle duration, for all but
very low values, when the average number of retransmissions
is high.

Note that these values are on the low side for practical
WSN duty cycle periods, as, due to the target to operate the
network at low duty cycles and to ON times at least in the
order of a few tens of milliseconds, the duty cycle period
is usually much longer. This confirms that in practice the
assumption of independent WLAN status during consecutive
sensing procedures holds.

C. COG-MAC Stability

The quality of a communication protocol depends on its
stability, i.e. how the selected performance metrics vary over
time. A protocol with highly variable performance is not
desirable. We have therefore evaluated how the number of
per packet COG-MAC handshake and packet retransmission
attempts vary at different WLAN observable load values. We
have considered the simulation topology of Fig. 15(b) with an
AP generating 50% and 5 WTs, each generating 10% of the
WLAN packets. We have placed 9 RR nodes at fixed locations,
such that RR sensor sri observes i · 10% of the WLAN active
periods. For each experiment we have varied the TR location
as before.

Fig. 18 depicts the coefficient of variation, c =√
Var[.]/E[.], of the measured handshake and transmission

attempts per packet, for different pRCCA values and under
different WLAN (p, Ī (WS)) model parameterizations. The low
coefficient of variation values – significantly below one –
indicates that indeed COG-MAC does maintain a relatively
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Fig. 18. Coefficient of variation of (a) the number of handshake attempts and
(b) the number of packet retransmissions under various WLAN observable
traffic values.
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Fig. 19. (a) Topology and transmission paths for COG-MAC and CSMA
based cross-layer design schemes under different percentage of WLAN back-
off periods. (b) Normalized end-to-end energy cost per bit and end-to-end
delay with respect to increasing percentage of WLAN back-off periods.
Ī(WS) = 36ms.

stable performance with little variations across expected val-
ues. In addition, the coefficient of variation of the packet
transmission attempts is lower compared with the one of
the handshake attempts and almost insensitive to the pRCCA
values, which confirms the efficiency COG-MAC white space
discovery mechanism.

D. Multihop COG-MAC Performance Analysis

Finally, we study the impact of COG-MAC on the energy
efficiency of multihop WSN communication under WLAN
interference. COG-MAC with energy optimized shortest path
(SP) routing is compared to a benchmark solution with
CSMA/CA and the widely accepted Collection Tree Protocol
(CTP) [10], that finds the shortest path with the expected
number of required transmissions per packet as the link weight.

In COG-MAC the optimal packet sizes may differ for the
links along a shortest path. To avoid the need for packet
fragmentation, the packet size is chosen at the source node
as the minimum of all optimal packet lengths along the path.
Packet size is selected similarly for the benchmark system.

As shown in Fig. 19, we consider a square WSN grid with
5m inter-node distance, and a source and a destination node
in the opposite corners. We place the WLAN AP in the center
of the grid, and many of the WTs close to the AP, to generate
a heterogeneous spectrum occupancy, with higher load around
the center. We compare the performance of the two solutions
for a constant Ī(WS) and increasing p value, that is, increasing
WLAN load. Fig. 19(a) shows the transmission paths for two
case studies with p = 0.2 and p = 0.8, respectively. For
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low p value, that is, low WLAN load the shortest paths are
identical and traverse along the line connecting the source
and destination node. For high load, however, the CSMA
based solution needs to avoid the area around the AP, and
redirects the transmission path to the borders, where the
WLAN interference is lower. At the same time COG-MAC
can safely transmit along the diagonal. Fig. 19(b) gives the
normalized energy and delivery delay per transmitted bit
over the source-destination transmission path. The COG-MAC
based solution outperforms the benchmark system, particularly
when the back-off period percentage increases but the WLAN
load is still moderate. We can conclude that COG-MAC leads
to significant energy savings and lower delays in multihop
WSNs, and, additionally, to optimal routes that are insensitive
to WLAN load changes.

X. CONCLUSION

In this paper we proposed COG-MAC, a cognitive MAC
scheme for energy efficient WSN operation under WLAN
coexistence. The proposed scheme is based on controlling
the interference from the coexisting WLAN by predicting its
behavior with a smart channel sensing mechanism that takes
into consideration the WLAN channel usage model. Energy
cost minimization is achieved by optimizing the WSN single-
hop transmission distance and packet length, based on the
estimated parameters of the WLAN channel usage model. To
solve the optimization problem we derived an analytic model
for the successful single-hop WSN packet communication.
Through numerical evaluation we showed that COG-MAC sig-
nificantly outperforms other MAC protocols, especially in case
of severe WLAN interference. The evaluation also revealed
that both COG-MAC optimization of packet size and transmis-
sion distance and smart channel sensing are key mechanisms
for increasing energy efficiency. We also presented simulation
results to demonstrate the accuracy of the analytic model
and to show that COG-MAC achieves significant gains even
in multihop environment. Consequently, COG-MAC provides
a distributed solution, that exploits existing functionalities
available in current commercial sensor hardware, and archives
energy-efficient communications in the presence of coexisting
WLAN networks.
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