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Abstract

Dynamic spectrum access has been recently proposed to increase the uti-
lization of the licensed spectrum bands, and support the constantly growing
volumes of mobile traffic in the modern society. At the same time, the in-
creasing demand for wireless connectivity, as a result of the rapid emergence
of innovative wireless and mobile services, has led to the deployment of var-
ious wireless technologies in the open ISM bands. This thesis addresses the
effective coexistence among the diverse wireless technologies in the above sce-
narios, and the energy efficiency of the deployed wireless systems, both listed
among the key challenges that wireless networking is facing today.

We discuss cooperative sensing, a fundamental mechanism for allowing
unlicensed users perform opportunistic access in the licensed spectrum. Con-
sidering the scenario where the users perform both sensing and unlicensed
spectrum access, we evaluate the efficiency of multi-channel cooperative sens-
ing schemes with respect to the per user achievable capacity. We conclude
that a careful optimization of both the number of sensed channels, and the
allocation of sensing duties to the network users is necessary to achieve high
capacity gains in large-scale networks of unlicensed users.

We address a number of energy efficient design issues for sensor networks
and wireless LANs. We study how to improve the energy efficiency of low-
power sensor networks operating under the interference from a coexisting
WLAN. We propose a cognitive, cross-layer access control mechanism that
minimizes the energy cost for multi-hop WSN communication, by deriving
energy-optimal packet lengths and single-hop transmission distances, based
on the knowledge of the stochastic channel activity patterns of the interfering
WLAN. We show that the proposed mechanism leads to significant perfor-
mance improvements on both energy efficiency, as well as end-to-end latency
in multi-hop WSN communication, under different levels of interference. Ad-
ditionally, we develop and validate the considered WLAN channel activity
model and implement efficient, lightweight, real-time parameter estimation
methods.

We investigate how to enhance the multi-hop communication performance
in ad hoc WLANs, when 802.11 stations operate under a power saving duty-
cycle scheme. We extend the traffic announcement scheme of the 802.11 power
saving mode, allowing the stations to propagate pending frame notifications
to all nodes in the end-to-end forwarding path of a network flow. We study the
performance of the proposed scheme with respect to end-to-end packet delay
and signaling overhead, while we investigate the impact on the achievable
duty-cycle ratios of the wireless stations. For the purpose of the evaluation,
and for the comparison with the standard 802.11 power saving mechanism,
we implement the protocol extension in a development platform.

Finally, we study how the combination of the objectives for energy ef-
ficiency and a high quality of service impacts the topology stability of self-
organized ad hoc networks comprised of individual agents. Based on a non-
cooperative game theoretic model for topology formation, we identify key ex-
tensions in the nodes’ strategy profile space that guarantees a stable network
formation under multi-objective player utility functions.
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Sammanfattning

Dynamic spectrum access har nyligen föreslagits som ett sätt att öka ut-
nyttjandet av licensierade frekvensband, och på så vis stödja det moderna
samhällets ständigt växande volym av mobiltrafik. Samtidigt har den ökade
efterfrågan på trådlös anslutning, till följd av snabbt framväxande, innovativa
trådlösa och mobila tjänster, lett till utbyggnaden av diverse trådlösa tekni-
ker i de öppna ISM-banden. Denna avhandling behandlar effektiv samexistens
bland de olika trådlösa teknikerna i ovanstående scenarier och energieffektivi-
teten hos de utplacerade trådlösa systemen, två av de nyckelutmaningar som
trådlösa nätverk står inför idag.

Vi diskuterar kooperativ avkänning, en grundläggande mekanism för att
olicensierade användare opportunistiskt ska kunna få åtkomst till licensierade
spektrum. Utifrån scenariot där användarna utför både avkänning och olicen-
sierad spektrumtillgång utvärderar vi effektiviteten med avseende på varje
användares uppnåeliga kapacitet. Vi drar slutsatsen att en noggrann optime-
ring av både antalet avkända kanaler och tilldelningen av avkänningsuppgifter
till nätanvändare är nödvändiga för att uppnå höga kapacitetsvinster i stor-
skaliga nätverk av olicensierade användare.

Vi tar upp ett antal frågor om energieffektiv design för trådlös sensornät-
verk (WSN) och WLAN. Vi studerar hur man kan förbättra energieffektivite-
ten hos ett sensornätverk som verkar under störningar från ett samexisterande
WLAN. Vi föreslår en kognitiv, lageröverskridande mekanism för åtkomstkon-
troll som minimerar energikostnaden för multi-hop kommunikation i WSN.
Framtagningen av åtkomstkontrollen sker genom härledning av energiopti-
merade paketlängder och överföringsavstånd, baserat på kunskap om stokas-
tiska kanalaktivitetsmönster i störande WLAN. Vi visar att den föreslagna
mekanismen leder till betydande prestandaförbättringar både avseende ener-
gieffektivitet, och end-to-end latens i multi-hop WSN kommunikation under
olika nivåer av störningar. Dessutom utvecklar vi och validera den föreslag-
na kanalaktivitetsmodellen för WLAN och implementerar effektiva och lätta
realtidsmetoder för skattning av parametrar.

Vi undersöker hur man kan förbättra prestandan för multi-hop kommu-
nikation i ad hoc WLANs då 802.11 stationer verkar enligt energisparande
duty-cycle system. Vi utvidgar tekniken för trafikmeddelande hos 802.11 i
energisparläge, och studerar prestanda i det föreslagna systemet med avseen-
de på end-to-end fördröjning och behovet av ytterligare signalering. Samtidigt
undersöker vi effekten av de uppnåeliga duty-cycle förhållandena hos de tråd-
lösa stationerna. För utvärdering och jämförelse med standardmekanismen
för energisparande i 802.11 implementerar vi det utvidgade protokollet i en
utvecklingsplattform.

Slutligen studerar vi hur kombinationen av mål för energieffektivitet och
hög kvalitet av tjänster påverkar stabiliteten i topologin hos självorganisera-
de ad hoc nätverk bestående av enskilda aktörer. Baserat på en modell för
icke-kooperativa spel vid topologi-bildning, identifierar vi viktiga tillägg till
nodernas strategiska profil som garanterar en stabil nätverksbildning enligt
spelarnas multi-objektiv nyttofunktioner.
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Chapter 1
Introduction

1.1 Motivation

In the recent decades our society has witnessed a dramatic increase in the demand
for wireless connectivity in industrial and residential areas, as well as an exponen-
tial growth in the volumes of data traffic as a result of the proliferation of mobile
broadband services, such as video telephony, personal communication, and mobile
multimedia streaming services. At the same time, rapidly emerging application
scenarios in the context of Wireless Sensor Networks (WSN) and the Internet of
Things (IoT), such as smart homes, building automation, surveillance, and com-
plex industrial control systems, increase the need for wireless connectivity, in both
machine-to-machine and machine-to-cloud communication scenarios.

Having to rely on limited spectrum, allocated by regulatory bodies, mobile op-
erators have addressed the exponentially increasing demand for mobile data traffic
by, both, expanding the coverage and the deployment density of mobile networks,
as well as by investigating ways to increase the efficiency of the allocated licensed
spectrum. Dynamic spectrum access, based on the innovative concept of software-
defined radio, constitutes an hierarchical spectrum sharing paradigm, enabling a
more efficient use of the radio spectrum by allowing the co-deployment of wireless
systems that can exploit the burstiness of mobile traffic and, thus, make use of
temporarily non-utilized licensed spectrum.

Wireless Local Area Networks (WLAN) have addressed the need for wireless
connectivity by promoting a flat, un-coordinated, unlicensed deployment of WLAN
access points in the open industrial, scientific and medical (ISM) spectrum bands,
offering cheap, broadband, wireless internet access to machines and individuals.
Beside WLANs, mesh radio technologies, such as 802.15.4-based 6LoWPAN, as
well as ultra low power wireless Personal Area Network (WPAN) solutions, such as
Bluetooth and ZigBee, make use of the unlicensed ISM bands, in an effort to provide
cost-efficient machine-to-machine (M2M) communication, for both consumer and
large-scale industry quality IoT applications.

1
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The coexistence of diverse network technologies in the same spectral bands
introduces two significant challenges. First, it requires interference management
mechanisms that will effectively restrict the interference to licensed networks in
scenarios of hierarchical coexistence. This advance may allow for spectrum regu-
lation changes, which will permit unlicensed access within D-TV, UMTS and LTE
spectral resources. Second, it requires access protocol mechanisms that will ensure
a fair sharing of spectral resources in case of flat, or heterogeneous coexistence,
that is the co-deployment of secondary wireless systems with diverse characteristics
in terms of transmission power, coverage and data rates. Instead of being opti-
mized for standalone operation, wireless protocols need to be designed in a way
that guarantees efficient access in the shared spectrum bands.

The tremendous expansion in the deployment of wireless systems, in an effort to
satisfy the increasing demands for wireless connectivity, has turned energy efficiency
into one of the most important considerations in wireless networking. Energy effi-
cient communication can lower the operational costs of wireless systems, allowing for
large-scale infrastructure deployments, or permit the realization of environmentally
sustainable solutions, such as energy harvesting. Being energy efficient, battery-
operating wireless devices with finite power supplies can maximize their operational
lifetime, which is a desired feature in scenarios where mobility and portability are
crucial application requirements. Lifetime maximization can, additionally, lower
the required frequency of human intervention for network re-configuration, and, in
general, decrease network maintenance costs. At the same time, energy efficiency
should not be guaranteed at the cost of low network performance. Therefore, en-
ergy efficient design comprises of mechanisms – spanning, possibly, multiple layers
of the wireless protocol stack – that ensure both a low-power operation for the
wireless devices, and a high quality of performance.

1.2 Scope and Outline of this Thesis

This thesis focuses on a number of design issues related to efficient wireless coex-
istence and low-power wireless network operation. The first part of the thesis con-
centrates on performance modeling and analysis of cognitive access control mech-
anisms that can guarantee an efficient coexistence between heterogeneous wireless
networks. The thesis contributes to the following topics:

• Hierarchical coexistence: we investigate the efficiency of cooperative spectum
sensing schemes in cognitive radio networks, with respect to the achievable
capacity of the unlicensed users. We study the case of dense ad hoc congni-
tive networks, evaluating the fundamental limits of secondary capacity under
constraints on the interference to the coexisting primary network.

• Flat heterogeneous coexistence: we design a cognitive access control scheme
for wireless sensor networks that operate under WLAN interference. The
scheme is based on a stochastic characterization of the WLAN channel activ-
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ity and employs cross-layer optimizations to increase the energy efficiency in
WSN communication.

• Stochastic WLAN modeling: we introduce and analyze stochastic models for
WLAN channel activity and develop efficient methods for real-time model
parameterization to support interference-aware cognitive access control.

The second part of the thesis addresses issues related to energy efficiency in wireless
networks. We focus on the following topics:

• We address the challenge of optimizing the WLAN power saving mechanism
to alleviate the negative effects of radio duty-cycling on the communication
performance in multi-hop 802.11 ad hoc networks.

• We study topology control in energy-constrained self-organized wireless sen-
sor networks under a game-theoretic formulation with multi-objective player
utility functions, reflecting both lifetime and QoS performance objectives.

The thesis is structured as follows: In Chapter 2 we discuss challenges and
solution approaches regarding efficient heterogeneous wireless coexistence. Chapter
3 surveys network design approaches towards enhancing the energy efficiency in
wireless networks. In Chapter 4 we give a more detailed description of the main
analytic and simulation tools that were used in this thesis. Chapter 5 includes a
summary of the original contibutions, while Chapter 6 presents the main conclusions
derived in this thesis, along with possible directions for future research.





Chapter 2
Wireless Coexistence

Wireless coexistence defines the scenario when various communication networks –
often operating on different radio technologies – coexist in the same geographical
area and spectrum space. Wireless coexistence can be the result of the deployment
of unlicensed, dynamic spectrum access-based networks operating within a licensed
spectrum space [1]. Alternatively, it can be the natural outcome of the uncoordi-
nated deployment of several networks inside the same open spectrum band [2]. In
both scenarios, however, the spectrum resources must be shared among multiple
networks.

The increasing number of wireless and mobile applications and services emerging
in the modern society, and the inherent problem of spectrum scarcity make wireless
coexistence the ruling scenario, rather than the exception, and, therefore, demand
for a rethinking of the mechanisms that regulate shared spectrum access.

Under wireless coexistence the spectrum access mechanisms should be designed
for addressing two fundamental issues. In general, they should ensure that the
available spectrum is shared, among the different network entities, as efficiently
as possible. This implies that the coexisting networks should effectively discover
opportunities to utilize their spectrum resources in a way that maximizes their per-
formance. In the particular scenarios involving dynamic spectrum access, the access
mechanisms should guarantee that the unlicensed networks are able to adapt their
transmission schemes in a way that the resulting interference to the co-deployed
licensed networks is controlled.

Efficient spectrum access design should, therefore, be cognitive, i.e. aware of
the activity of the coexisting networks. In this Chapter we look into the key com-
ponents of cognitive access mechanisms (Fig. 2.1) that enable an efficient wireless
coexistence. We then introduce the most common performance metrics, with re-
spect to which the efficiency of these access mechanisms is evaluated. Finally, we
discuss the design and optimization of cognitive access mechanisms under both the
aforementioned scenarios of wireless coexistence, focusing on the challenges and the
solutions for regulating effectively the utilization of the shared radio spectrum.

5
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Figure 2.1: Interactions among the key components of a cognitive access scheme.

2.1 Cognitive Spectrum Access

Spectrum sensing
The first challenge in the case of wireless coexistence is how to effectively detect
the presence of the co-deployed networks. Spectrum or channel sensing refers to
the mechanism of detecting the presence of transmitted signals within a particular
frequency band by listening to the channel. Spectrum sensing offers instantaneous
spatio-temporal information about the status of the sensed channel (or spectrum
band). Wireless terminals utilize this information to assess both the opportunity
of performing a successful transmission within the particular band, as well as the
probability of causing harmful interference to a coexisting wireless transmission
[3]. In addition to that, spectrum sensing – performed over longer periods – can
be used to characterize the statistical properties of spectrum occupancy in the
neighborhood of a wireless user [4]. Based on this statistical information that user
can adapt its long-term channel access behavior in order to avoid communication
impairments due to the coexisting networks and, thus, maximize its communication
performance.

Wireless terminals may perform spectrum sensing based on energy detection
schemes [5][6] when the nature and the format of the transmitted signals are un-
known. Alternatively, they utilize more sophisticated schemes, like match-filter,
or cyclo-stationarity-based detectors [7], when a-priori knowledge of the particular
signal characteristics is available.

Due to channel noise and signal attenuation phenomena, spectrum sensing is
in general imperfect, leading to frequent erroneous channel activity assessments
by the sensing devices. The performance of spectrum sensing degrades rapidly
with the distance between the transmitter and the sensing device, which decreases
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the signal-to-noise-ratio over the sensing link. In addition, channel fading and
shadowing on the sensing link limit the reliability of spectrum sensing mechanisms;
this reliability can be increased by enforcing cooperation among several sensing
devices [8], exploiting the spatial diversity over the sensing links [9][10][11][12].
The cooperative decision can be either hard, that is, based on combining individual
decisions at each sensing device [13], or soft when it combines raw channel sensing
measurements at each device [14][15]. Optimal soft decision combining [14] is shown
to outperform hard combining schemes as the decision is made exploiting all the
knowledge obtained through spectrum sensing.

The cost of sensing reflects the resources allocated to spectrum sensing, namely
the sensing time or the sensing energy that are spent by the sensing devices, or
the signalling and processing overhead of exchanging sensing results, in order to
perform the collaborative decision. Sensing optimization aims at maximizing the
achievable sensing performance, subject to certain constrains on the sensing cost
[16].

Cognitive network protocol design
Cognitive network control refers to the design of wireless medium access, link-layer
and routing control schemes aiming at achieving an efficient utilization of the trans-
mission opportunities within the shared spectrum, discovered via sensing. Cognitive
network control addresses two fundamental issues. It enables interference manage-
ment, that is, it regulates the interference among the coexisting networks, and
optimizes MAC and routing schemes for communication performance enhancement
in coexistence scenarios.

Interference management builds on the information provided by channel sensing.
To control the interference to a licensed network, an unlicensed user may need to
immediately evacuate a spectrum band on which a signal originating from the
licensed system has been detected. Alternatively, the user may apply an effective
power control scheme, that is adapt its transmission power at a level that it does not
cause harmful interference to the ongoing detected transmission [17]. Interference
management may additionally involve channel hopping [18][19] mechanisms, where
wireless users migrate to a different channel in order to mitigate the interference
with the detected signals, thus, protecting both their own and the detected wireless
transmissions.

Spectrum sensing and frequency hopping can be combined into efficient spectrum
sensing and handoff schemes [20][21][22], where users dynamically modify their
sensing and channel access policies based on the obtained sensing results, in order
to limit the interference to and from the coexisting networks.

In addition to the instantaneous information provided by spectrum sensing, a
cognitive network control scheme may utilize a-priori statistical knowledge of the
transmission patterns of the users of the coexisting networks. Such schemes in-
volve the optimization of a set of cross-layer transmission parameters. As far as
Medium Access Control (MAC) is concerned, cognitive access schemes optimize the
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frame transmissions lengths to avoid collisions with the users of the co-deployed net-
works [23]. Cognitive routing schemes involve routing traffic dynamically, avoiding
network nodes with limited spectrum resources. Under multi-hop communication
cognitive access control may optimize the next-hop selection, with the objective
of maximizing the performance of the end-to-end communication under the inter-
ference of the coexisting networks [24]. For such solutions it is crucial that the
a-priori knowledge of the aforementioned transmission behavior is sufficiently ac-
curate, while, at the same time, it can be obtained at minimal cost.

Finally, cognitive network control may employ medium access protocol tech-
niques that enhance the robustness of single-hop communication, such as enforcing
enhanced link-layer transmission handshake mechanisms, thus, improving collision
detection and interference mitigation. Alternatively, it may involve mechanisms for
smooth inter-operation between the coexisting networks, for example, by a-priori
assuming [25], or by identifying the tranmission patterns of the co-deployed net-
works – decoding link-layer management transmissions [26] – to enable in this way
a more efficient spectrum sharing.

Cognitive resource management
In wireless coexistence scenarios cognitive resource management refers, to the pro-
cess of determining the amount of network resources that needs to be spent for
discovering transmission opportunities. In addition, it manages the allocation of
the resulting transmission opportunities to the network users.

Spectrum resource management models the inherent tradeoff between the re-
sources allocated for spectrum sensing and the resulting sensing performance, that
reflects the cognitive capacity, that is the amount of spectrum resources available
for the network users. This modeling enables the derivation of the sensing parame-
ters that result in a target cost-capacity operational point for the cognitive system.
As a representative example of cognitive resource management, [27] addresses the
problem of sensing efficiency maximization in cognitive radio networks. Consider-
ing that the time spent for sensing reflects a capacity loss for the users, the work
aims at optimizing the lengths of the spectrum sensing periods.

In the context of collaborative sensing, and since discovering spectrum oppor-
tunities requires effort from a set of cooperating users, these users need to decide
how large part of the spectrum space they intend to sense and utilize. On one
side, a large space may increase the number of channels to sense, so that there are
more transmission opportunities to share. On the other side, this requires more
sensing efforts from the users, revealing that there is an optimal spectrum space to
be sensed that depends, additionally, on the capacity requirements of the existing
users [28].

An important challenge is how the discovered transmission opportunities will
be allocated among the existing wireless users. Optimally, a fair spectrum resource
sharing scheme is desired, which implies that the sensing cost of each wireless
user quantitatively reflects its achievable transmission capacity [29]. In addition
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to that, wireless users may, in general, have different capacity requirements; this
diversity among the individual user requirements or objectives needs to be taken
into consideration when distributing the cost of spectrum sensing so as to provide
strong inscentives for cooperation to the wireless users [30].

2.2 Performance Metrics in Cognitive Coexistence

Sensing and interference control

The cross-network interference, defined as the interference between the coexisting
networks, can be viewed from two different perspectives: from the transmitter’s, or
the interferer’s, and from the receiver’s perspective. From the interferer’s point of
view we aim at evaluating the ability of a network to detect and effectively avoid
to cause interference to the co-existing systems. From the perspective of a receiver,
we aim at quantifying the ability of a system to efficiently operate in the presence
of interfering networks.

Interference avoidance

The ability of wireless system to effectively detect and avoid interfering with a co-
deployed network is quantitatively captured by the probabilities ofmissed detection,
pMD, and false alarm, pFA. pMD denotes the probability that a transmitted signal at
an arbitrary point in time is not detected by the users of a coexisting network who
aim at simultaneously utilizing the same transmission band in the neighborhood of
the transmitted signal. On the other side, pFA defines the probability that channel
sensing results in a false detection of signal presence due to channel noise. Local
missed detection refers to the sensing performance at individual sensing devices,
while global or cooperative missed detection refers to the collaborative detection
process by a set of devices. Regardless of the exact spectrum sensing model that is
applied,

pMD , pMD (SNR(d), Ts)

is a decreasing function of the instantaneous signal to noise ratio at the sensing
device, while it decreases with the duration of the sensing time allocated for sensing,
Ts. As SNR is a decreasing function of the distance separation, d, missed detection
probability increases with the length of the sensing link.

Missed detection events, however, do not necessarily result in cross-network in-
terference, unless multiple users from different networks simultaneously attempt to
utilize the same channel in the neighborhood of each other. Therefore, a network
that intends to operate without causing harmful interference to a coexisting wire-
less system calculates the probability of interference, PI , on a channel as the joint
probability of two events: i) a missed detection of an ongoing transmission from a
user of the coexisting network in the particular channel, and ii) a channel access
attempt by a network user that collides with the ongoing transmission, resulting in
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transmission error:

PI , Pr {missed detection, collision} .

Under wireless coexistence interference can not be completely avoided, due to the
imperfections in spectrum sensing and the stochastic nature of the channel ac-
cess. Instead, coexistence is regulated based on practical non-zero interference
constraints, i.e. PI ≤ Pmax

I , which, if met, guarantee an acceptable system perfor-
mance.

Surviving cross-network interference

From the receiver’s point of view we are interested in assessing the ability of a wire-
less device to communicate successfully under the interference of the co-deployed
networks [31]. We quantitatively capture the efficiency of coexistence by evaluating
for a transmitter-receiver pair the probability of successful communication,

Pr{success|dt-r},

in the presence of cross-network interference. Communication success decreases
with the transmitter-receiver spatial separation, dt-r, [24], since a higher distance
decreases the receiver signal power, and, consequently, exposes the transmission to
potential interference from a larger area,

∂ Pr{success|dt-r}
∂dt-r

≤ 0, dt-r > 0.

In addition to that, communication success depends heavily on the transmission
properties of the coexisting networks, which, in turn, depend predominantly on the
traffic patterns of their users. In general, the duration of the communication, t,
decreases Pr{success|dt-r, t}, since it increases the time interval within which this
transmission is exposed to cross-network interference,

∂ Pr{success|dt-r, t}
∂t

≤ 0, t > 0.

Cross-network interference estimation
Efficient wireless coexistence is facilitated if the networks configure their communi-
cation mechanisms based on the knowledge of the stochastic spatio-temporal chan-
nel access patterns of the co-deployed systems [23]. An accurate modeling and
parameter estimation of the channel usage is, therefore, desired under wireless co-
existence.

Channel usage patterns – including the durations and the autocorrelation prop-
erties of the active and idle channel periods – depend on the traffic workload of
the network users, on the network topology, and on the underlying medium access
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mechanisms [32][33]. These factors must be considered when introducing a tractable
wireless channel occupancy modeling [34]. The applicability of the channel occu-
pancy model is assessed applying a goodness-of-fit tests, of a set of measurements
or observations, against the expected observations under the model in question.

Following the model validation, an efficient parameter estimation algorithm
must be designed. The estimation efficiency is assessed by the resulting accuracy
of the estimated parameters, evaluated by the parameter estimation errors as a
function of the resources spent for channel occupancy estimation. As the channel
occupancy parameterization is performed by the users collecting active and idle
period duration samples, with the help of their own channel sensing infrastructure,
we evaluate the efficiency of the parameter estimation as the minimum required
number of collected samples that guarantee that the parameter estimation error
drops below a predefined threshold.

Communication performance

Achievable capacity

Under wireless coexistence, we define a network’s achievable capacity [35] as the
total amount of the shared spectrum resources available for communication. The
achievable capacity, C, is a function of the spectrum sensing performance of a
network, quantified through the missed detection and false alarm probabilities, the
total number of sensed bands, M , as well as the aggregate cross-network channel
load, ρ, within the sensed spectrum space.

C , C (M,ρ, pMD, pFA) . (2.1)

The network achievable capacity is then shared among the users, N , of the network,
leading to the per-user average achievable capacity,

C(N) = C (M,ρ, pMD, pFA)
N

. (2.2)

QoS-related metrics

C(N) indicates the per-user spectrum resources that are available for communi-
cation, reflecting nominal user communication performance. Additionally, we may
want to evaluate the impact of wireless coexistence on the practically experienced
communication quality. For that we introduce a set of user QoS-related performance
metrics.

We introduce the end-to-end transmission delay, to evaluate the communica-
tion delays in multi-hop wireless networks as a result of cross-network interference.
The end-to-end delay depends on the experienced interference along the multi-hop
transmission paths, which affects the expected number of retransmissions, ETXr,
on each link of the path, where ETXr is inversely proportional to the probability
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Figure 2.2: Hirearchical primary-secondary network coexistence with the secondary
network performing dynamic, unlicensed spectrum access.

of successful transmission,

ETXr = 1
Pr{success|r} .

Similarly, in multi-hop wireless networks end-to-end throughput defines the in-
formation delivery rate – in bits per time unit – between a source and the respective
destination node under cross-network interference. Multi-hop paths experiencing
high cross-network interference should normally be avoided, in order to maintain
high throughput, and to limit the experienced end-to-end delays [36].

Energy efficiency is a commonly set objective for communication networks
formed by energy-constrained wireless devices. Designing an energy efficient pro-
tocol stack is a fundamental prerequisite, in order to guarantee a sufficiently long
network lifetime. Protocol design is energy efficient, when it minimizes the energy
cost per transmitted unit of information. Considering, in general, multihop commu-
nication scenarios, we quantify energy efficiency by defining the normalized energy
cost metric [24], which gives the total energy required for transmitting a unit of
information over a unit of distance towards the final destination node.

2.3 Design Challenges for Coexistence Scenarios

Hierarchical coexistence: The case of primary-secondary network
coexistence
Traditional regulatory access mechanisms in cellular networks, such as exclusive
spectrum licensing and spatial frequency reuse often fail to guarantee an efficient
usage of the available spectrum [37]. Spectrum may remain highly underutilized
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as a result of low instantaneous demand for wireless traffic exchange within the
licensed networks [38][3], caused by high spatio-temporal burstiness in user traffic
demand. Licensed spectrum underutilization has been experimentally proven in
a broad set of scenarios [39], and in particular for cellular – UMTS and LTE –
communication networks [37][40].

Parallel to this, we have witnessed the emergence of broadband wireless internet
services with lower requirements in terms of user-experience QoS, including data
delivery delay, jittering, or packet loss rates. Such services can be supported by
unlicenced, low-priority, dynamic spectrum access-based networks [41] [1] [42] that
coexist with the licensed (or primary) networks and make use of the temporarily
non-utilized licensed spectrum (Fig. 2.3).

Wireless coexistence, however, introduces the need for interference control be-
tween the licensed, and the unlicensed – or secondary – users (SU), since licensed
users should not experience any communication performance degradation due to
the operation of the unlicensed network. In other words, interference management,
based on spectrum sensing [43], is the key component behind the deployment of
unlicensed (or secondary) communication networks.

Spectrum sensing & capacity maximization

Spectrum sensing is the fundamental mechanism for identifying appropriate trans-
mission opportunities and for protecting the licensed or primary user operation.
The efficient design of spectrum sensing involves optimizations at both local and
global (cooperative) level.

Local sensing optimization: At local level, cognitive users must first optimize
the length of their sensing measurements [20][44]. Short-period sensing measure-
ments increase the probability of missed-detecting an active primary user, while
longer sensing periods reduce the time available for secondary communication and
increase the energy consumption of sensing. As typically there are more than one
channels available for secondary access, sensing is often perform sequentially over a
set of multiple channels. An important challenge here is how to optimize the order
in which sensing is carried out in each of the bands. The work in [45] optimizes the
sensing order taking the long term occupancy statistics of the respective channels
and minimizes the required sensing energy cost while maintaining a target missed
detection probability at each sensed band. To increase energy efficiency sensing
order optimization can be combined with dynamically adjusting the sensing time
duration [46], upon achieving a target performance. Spectrum sensing can, addi-
tionally, employ learning techniques for deriving the optimal sensing order [47], to
maximize reliability. Optimal sensing policies may be applied in order to select
a particular subset of channels to sense, for example, based on long-term channel
availability [48] or short-term band occupancy along with channel quality statistics
[49].
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Sensing resource allocation: At cooperative level, sensing performance in-
creases with optimal combining of individual sensing measurements, based on the
experienced SNR levels at the sensing devices [14], the individual measurement
reporting reliability [50], or the correlation among sensing results [51].

In addition, efficient cooperative sensing involves the optimization of the total
sensed bandwidth [52] and the extent of cooperation among sensing devices. As
discovering spectrum opportunities requires effort from the cognitive users, the users
need to decide, first, how large part of the spectrum space, dedicated for unlicensed
operation, they want to utilize, and, second, how many of them should cooperate for
sensing each band in the spectrum space. On one side, the users may increase the
number of channels to sense, so that there are more transmission opportunities to
share. On the other side, this requires more sensing efforts from each SU. Similarly,
increasing the number of cooperative users lowers the resulting missed detection
probability [53], at the expense of linearly increased sensing resource requirement for
detecting channel availability. In Paper A, we address the above joint optimization
aiming at maximizing the achievable per-user cognitive capacity, as it was defined
in Section 2.2 and show how the density of the secondary network, and the desired
coexisting licensed network interference constraint are important design factors.

Sensing coordination: After determining the number of users to participate
in the cooperative decisions, a remaining issue is how to decide on the exact sensing
duties to be allocated to the existing secondary users. This problem is often de-
fined as sensing coordination [54]. Correlation-aware sensing cordination schemes
[55] aim at guaranteeing that the users sensing the same bands experience un-
correlated channel gains on the sensed links. Sensing coordination may rely on
a centralized mechanism that distributes sensing coordination information to the
secondary users, ensuring a similar missed detection rate over each of the sensed
bands. Alternatively, a distributed approach lets the existing secondary users indi-
vidually select a set of bands to sense. Clearly the first approach achieves a higher
capacity due to balanced detection performance in each sensed band, at the expense
of a significant signalling overhead that is required to distribute the coordination
information to the users. Such overhead may be prohibited in scenarios where en-
ergy efficiency is desired or in cases where time constraints require fast cooperative
sensing decisions. In Paper A we define and analyze sensing allocation mechanisms,
spanning from fully randomized to fully centralized sensing coordination schemes,
and conclude that there exists a constant performance gap between the centralized
and distributed approaches that is independent of the network density and the re-
maining design factors. We achieve this by analytically deriving the asymptotic
performance limits for the aforementioned sensing coordination schemes.

Heterogeneous flat coexistence: The case of WSN and WiFi
Flat wireless coexistence is the result of uncoordinated co-deployment of networks
operating in overlapping subsets of the open spectrum ISM bands. As opposed to
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Figure 2.3: Heterogeneous coexistence of 802.11 and 802.15.4 networks in the
2.4GHz ISM band.

the case of hierarchical coexistence, where exclusive spectrum ownership demands
efficient interference avoidance mechanisms, flat coexistence focuses on developing
protocols that, instead, guarantee an efficient operation for all systems.

In recent years we have witnessed a rapid increase in the technologies operating
in the 2.4GHz ISM band, with the common characteristics of being license-free
networks, employing random medium access schemes, and supporting error and
delay-tolerant communication services. Among the most popular systems we list the
wireless sensor networks with customized communication standards, IEEE 802.15.4-
based personal area networks (WPAN), IEEE 802.11-based wireless LANs, as well
as Bluetooth networks, cordless phones and RFID communication systems.

Due to the different transmission characteristics of the aforementioned systems,
flat coexistence is, defined as heterogeneous [24], and imposes different challenges
in the design of the different network players. Systems with relatively high trans-
mission power levels, combining, additionally, efficient broadband physical layer,
enhanced radio hardware and moderate communication ranges, often do not expe-
rience any performance degradation due to the operation of coexisting networks.
The protocol stack of such systems can, therefore, be designed and optimized con-
sidering standalone operation.

On the opposite side, the performance of systems operating within narrow-band
channels and with relatively low transmission power may be severely affected by
the presence of high-powered systems. For such networks, the performance of the
channel access control mechanisms can be significantly improved, if their design is
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cognitive, i.e. aware of the radio environment, including the presence and channel
occupancy patterns of the coexisting networks.

In this thesis we focus on the popular scenario of a low-power WSN that operates
under the interference of a coexisting WLAN (Fig. 2.3). Heterogeneous coexistence
is justified by the relatively high difference in the transmission power of the two
network technologies. Due to this difference, WLAN terminals are blind towards
the WSN transmissions [4], and do not back off when a transmission is initiated
that overlaps with that of a WSN packet. As a result of such packet collisions, WSN
communication performance degrades, while WLAN througput is hardly affected
by WSN interference, a scenario that is often defined as asymmetric interference.

The negative impact of the cross-network WLAN interference on the WSN per-
formance has been underlined in a plethora of experimental studies [56], while
similar studies have been conducted for Bluetooth systems [57] [58]. In order to
survive the WLAN interference and, thus, guarantee a high communication per-
formance, WSNs must employ smart channel access mechanisms, i.e. avoid using
the wireless channel simultaneously with the WLAN terminals. We review here the
basic principles of cognitive coexistence in the case of flat-hierarchy, asymmetric
interference scenarios.

WLAN white space characterization

Model design and validation: Identifying and capturing the statistical prop-
erties of the spatio-temporal WLAN channel occupancy enables the WSN users
to assess accurately the transmission opportunities under WLAN coexistence [34].
The first step towards this direction is the adoption of an appropriate stochastic
model that can describe WLAN occupancy in a broad range of WLAN networking
scenarios. To be attractive for analytic performance studies and cognitive access
control design, a good model candidate must be relatively simple. It must, addi-
tionally, bare the structure and the required degrees of freedom that ensure a good
potential of capturing the behavior of WLAN channel occupancy at a microscopic
level [59], that is, modeling directly the short term temporal behavior of the channel
status in WLAN networks.

Related work in this area includes the seminal approach in [33] that derives an
analytic model for the impact of IEEE 802.11 MAC protocol on channel occupancy
assuming saturated traffic. WLAN traffic, however, is far from saturated; conse-
quently, channel usage models are usually developed based on a-priori considered
traffic generation patterns [60] [61], or workload models derived from measurement
studies [62] [63] [2]. In this thesis we adopt the interesting approach introduced
in [23], where an ON-FF semi-Markovian model is employed to characterize the
WLAN channel usage. A significant challenge in WLAN activity characterization
is to assess the generality of the proposed model; this may be conducted based on
real traces of WLAN channel usage collected from public WLAN hotspot measure-
ments [64], or generated in testbed experiments [2]. Instead, Paper D validates the
model applicability over a broaded range of traffic workload scenarios, generated
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based on experimentally driven high-layer 802.11 traffic statistics [65], in an effort
to close the gap between macroscopic WLAN traffic workload modeling [65]–[73]
and microscopic channel usage models. Focusing primarily on modeling the idle
channel periods, we show that the proposed model exhibits excellent fitting un-
der diverse WLAN scenarios, due to its inherent mixture distribution for the idle
period lengths, consisting of a right truncated term that models the short 802.11
DCF back-off periods, and a heavy-tailed [74] term for the longer periods of WLAN
terminals’ inactivity.

Model parameterization: WSN terminals rely on channel sensing, in order to
collect a sequence of channel occupancy samples – active and idle period lengths –
and to parameterize the WLAN channel usage model [2]. The challenge rises due
to the sensing limitations of the WSN terminals, which may only partially detect
the WLAN channel activity. Thus, in [75] we enhance the adopted WLAN model
considering the WSN limited sensing range, and prove the existence of a closed-form
expression for the model stochastic distribution functions on the Laplace transform
domain [76].

Estimation algorithms are required to be computationally efficient, in order to be
able to run on constrained-resource devices, such as sensor nodes. CPU constraints
impose limits on the complexity of the estimation algorithms, while memory con-
strains require on-the-fly computation of the model parameters, without the need
for storing the collected WLAN empirical channel occupancy traceset. In [75] we
describe a estimation algorithm based on maximum-likelihood maximization and
show that for a target estimation accuracy, as defined in Section 2.2, the conver-
gence speed – in number of samples – depends on the percentage of the observable
WLAN activity. In an attempt to satisfy potential memory limitations, in Paper C
[77] we develop an estimation algorithm that allows WSN terminals to dynamically
re-compute the model parameters based on a real-time sample collection mecha-
nism. The algorithm structure is based on a modified version of an iterative discrete
stochastic optimization scheme [78]. In Paper C we prove the algorithm convergence
stability based on the properties of the WLAN channel occupancy functions.

Interference-aware protocol design

Under WLAN coexistence WSN terminals need to control channel access in a way
that it alleviates the harmful WLAN interference and ensure an effective use of
the shared ISM spectrum band. Traditional interference mitigation schemes in-
clude channel hopping mechanisms, where WSN nodes measure and tune to the
best available band for communication [79] [80] [81]. However, the effectiveness
of these schemes is debatable, particularly in cases where all considered bands ex-
hibit similar statistical interference. Alternative approaches focus on mitigating
the cross-network interference by adding information redundancy [31][82] or by
partial intervention with the WLAN MAC operation [26]. The efficiency of these
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approaches is accompanied by either significant transmission overhead, or hardware
extensions in WSN design.

Effort has therefore been put on exloiting the knowledge of 802.11 channel activ-
ity patterns leading to cognitive access control, alternatively denoted as interference-
aware MAC design. Approaches similar to the seminal work in [83] attempt to
jointly optimize polices for channel access and discovery of transmission oppor-
tunities, based on a-priori known traffic statistics of the interfering network. A
requirement for a wide system-optimization approach is to efficiently couple the
cognitive access mechanism with the WLAN channel occupancy model derivation
[4] [23]. Our work in Paper B addresses the challenges of model estimation, and
cognitive access optimization over partially observable WLAN activity. It shows
that the WLAN occupancy statistics serve as input for both the design of the chan-
nel sensing scheme, as well as for the optimization of the WSN transmission policies
and can, therefore, maximize the probability of transmission success, as defined in
Section 2.2 under cross-network interference.



Chapter 3
Energy Efficiency

Energy efficiency is perceived as one of the most important concerns in wireless
networking. In a wide range of network applications involving wireless devices with
finite energy supplies, energy efficient operation is the key factor behind extending
the lifetime of the devices to reasonable times. Typical examples of such appli-
cation scenarios are battery-powered, radio-capable consumer electronics, such as
wearable sport gadgets, health monitoring, or entertaintment electronics, where
the requirement for energy efficiency is enforced by battery size limitations, driven
by the consumers’ demand for portability and minimal device design. In rapidly
emerging networking applications within the context of the Internet of Things, such
as smart home appliances, building automation, or smart cities, energy efficiency
is, additionally, required for scaling up the deployed network infrastructures, while
guaranteeing environmentally sustainable operation. Finally, the rapid proliferation
of applications for wireless sensor networks, such as monitoring environmental con-
ditions, or targeting surveillance, actuation and automation on complex industrial
control systems [84], demands for energy efficient design in an effort to maintain
low operational costs, thus, alleviate the concerns about the profitability of smart
automation and monitoring solutions in large-scale industrial production.

Energy efficient design in wireless networking refers to two fundamental engi-
neering tasks. The first task is to define appropriate metrics, based on which the
energy efficiency of a network can be quantitatively evaluated. The second task
is to come up with the required architectural changes in network design, and to
engineer novel communication protocols, which will allow the wireless devices to
utilize their energy resources as effectively as possible, while maintaining a high
quality of service for the applications that use the networking infrastructure.

19
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3.1 Evaluating the Communication Energy Efficiency

Metrics for energy efficiency
Transmission cost: As the major source of energy consumption of low-power
wireless devices is associated with their radio operations, the primary mechanism
for achieving energy efficiency is the minimization of the nodes’ communication
energy cost per unit of transmitted information. In general, communication proto-
col operations involve an inevitable transmission overhead – in the form of frame
header extensions, link layer packet retransmissions to increase reliability, as well
as medium access and routing protocol signalling – which may significantly in-
crease the communication energy cost. We can quantify the cost of transmission
overhead by normalizing the energy consumption with the amount of information
transmitted by the wireless devices. In multi-hop networking scenarios, the pro-
tocol energy efficiency must account for the end-to-end energy cost of information
delivery. Based on the above considerations, in this thesis we quantify the energy
efficiency of communication protocols by defining the normalized energy cost metric
[24], which gives the total energy required for transmitting a unit of information
over a unit of distance towards the final destination node for a multi-hop end-to-end
transmission.

Lifetime: One of the key directions towards energy efficient design is the max-
imization of the network lifetime, which is the amount of time when the wireless
network can sustain the target operational performance. Network lifetime depends
not only on the communication energy efficiency at the individual wireless devices,
but, additionally, on the distribution of energy consumption among the nodes in
the network. In multi-hop networks, exessive traffic relaying increases a node’s en-
ergy consumption, and may lead to node failures, which impose a severe threat on
the connectivity and the stability properties of the network topology. As a wireless
node depends on relaying nodes so as to transmit and receive traffic over multi-
ple hops, its lifetime is strongly correlated with the lifetime of the relaying nodes.
Therefore, in this thesis we express the lifetime of a wireless device as a function
of the lifetime of the nodes, on which this device relies, in order to achieve target
connectivity properties. ’Energy efficient design’ refers to efficient network forma-
tion, traffic routing, and topology control that increase the lifetime of the wireless
devices.

Duty-cycle ratio: In addition to the energy consumption when transmitting
or receiving data, the wireless devices may spend a significant amount of energy
resources when they remain idle, that is, when they listen to the radio channel
waiting to receive information. Radio duty-cycling is proposed as the straightfor-
ward approach towards mitigating the energy cost of idle listening [85]. Duty-
cycling mechanisms are implemented on the medium access control (MAC) level
[86]. Duty-cycling demands the wireless devices activate their radios only when
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they need to participate in data exchange; in the absence of relevant traffic, de-
vices can transit to sleep [87] or doze state [88] to save energy. Energy savings are
high when the devices remain in the doze state for long periods. Therefore, in this
thesis we evaluate the efficiency of duty-cycling by the achievable sleep ratio, that
is the percentage of time a wireless device can operate with its radio de-activated.
’Energy efficient’ design concerns the optimization of duty-cycling parameters that
maximize the sleep ratio of the devices in a network, under a given traffic workload.

Delay overhead: While it effectively decreases the cost of idle listening, duty-
cycling may introduce significant delays in traffic exchange, as the devices are not
able to receive data when they are in sleep state. Thus, data transmission needs
to be buffered until the receiver wakes-up. In a multi-hop transmission, buffering
delays may occur at each intermediate node introducing significant latency in traffic
delivery, which, in turn, imposes concerns about the applicability of duty-cycling.
A duty cycling-based protocol is efficient when the energy cost savings are achieved
at the expence of low traffic exchange delays. Therefore, in this thesis we introduce
the delay overhead metric to quantify the impact of duty-cycling on data delivery
delays. In multi-hop networking scenarios the delay overhead denotes the end-
to-end traffic exchange delays as a result of duty-cycling. Here, ’energy efficient
design’ refers to developing wireless duty cycle-based protocols that maintain a low
multi-hop delay overhead.

Energy efficient protocol design in wireless networks

Energy efficiency in wireless networks can be viewed from two opposite perspec-
tives: as a performance objective, or as a built-in constraint in network design.
When constituting an objective, energy efficiency refers to the architecture and
the optimization of network protocols, that decrease the energy cosumption of
resource-constrained wireless devices. From the perspective of a constraint, energy
efficient design refers to network architectural changes that allow network proto-
cols to maintain high performance standards, while operating with limited energy
resources. This chapter surveys recent developments related to energy efficient de-
sign, with the emphasis put on cross-layer approaches, where different protocol
modules and building blocks, e.g. medium access, routing, or topology control are
jointly designed for performance improvements, with respect to the aforementioned
performance metrics.

We begin with energy efficient design approaches in wireless ad hoc and sensor
networks, and close the discussion with novel advances and contributions towards
energy efficiency in 802.11 (WLAN) networks.
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3.2 Energy Efficient Design for Wireless Ad hoc and Sensor
Networks

Cross-layer protocol optimizations for energy efficiency

Wireless sensors employ power control as a means of regulating their energy con-
sumption level [89]. Power control covers a broad area of power conservation tech-
niques that aim at increasing energy efficiency, while satisfying performance require-
ments, such as througphout, data-rates, and link reliability. Reducing transmission
power at the devices decreases, in general, communication range and data-rates.
Therefore, on network scope, power control is often coupled with routing and link
scheduling optimization, in order to minimize the normalized communication energy
cost of the wireless nodes subject to connectivity and data delivery requirements.
The seminal works in [90][91] propose algorithmic solutions that jointly optimize
routing selection and power allocation in a wireless network, so as to mimimize
the normalized energy cost for a given traffic workload that describes the rates,
at which traffic is to be delivered between specific source-destination pairs. The
optimal route selection takes into account the interference between simultaneous
transmissions, thus, schedules neighboring link transmissions in different time slots.

Wireless sensors may, additionally, control the transmission overhead, and, con-
sequently, the communication energy efficiency, by applying packet length optimiza-
tion techniques [92]. Large packet sizes decrease the framing overhead, but lead
to higher packet error rates, and, therefeore, frequent retransmissions, since the
packets are exposed for a longer period to channel noise and interference from
simultaneous tranmsissions. Consequently, large packet sizes may increase the re-
transmission overhead at the MAC layer. Packet length optimization is, therefore,
a crucial design factor for energy efficient communications in wireless networks [93].
Intuitively, packet size and routing may also be jointly optimized for energy effi-
ciency in multi-hop wirless networks [94]. To decrease the normalized end-to-end
energy cost of communication, nodes may, for example, select to route their traffic
via a larger number of intermediate hops, choosing shorter single-hop links, where
large packets can be transmitted with high reliability.

Under coexistence with high-power wireless networks, wireless devices may per-
form packet length optimization with the help of efficient statistical characterization
of the cross-network interference [23]. If the channel activity model of the high-
power interferer is known, or can be determined, low-power wireless devices can
trade-off larger framing overhead with larger retransmission overhead, to deter-
mine the optimal packet size that mimimizes the normalized energy cost [4]. In
Paper D we jointly optimize WSN packet size and next-hop transmission distance
to maximize energy efficiency under known WLAN interference patterns.

In the context of energy efficient design topology control mechanisms are em-
ployed in an effort to prolong the lifetime of resource-constrained nodes in the
wireless network. A plethora of approaches propose load-balanced network topolo-
gies, where traffic flows are directed in a way that avoids significant irregularities in
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the local energy consumption of the nodes [95][96]. In several approaches, topology
control is coupled with power control, so that the wireless devices can select the
optimal set of neighbor links and then determine the optimal transmission power,
based on the experienced interference on each link [97].

Energy efficiency under QoS considerations
While energy efficiency is an important design factor, the vast majority of network-
ing application scenarios introduces equally important QoS considerations, such as
the traffic delivery delay and the reliability of the routing paths. In several cases
there exists an inherent conflict between these two categories of design goals. Aim-
ing at achieving higher energy savings and increased lifetime, wireless devices might
need to compromise the quality of service. Therefore, significant effort is devoted
to network optimization oriented towards both energy and performance efficiency.

The trade-off between energy efficiency and network performance may be ana-
lyzed under a multi-objective, system-wide optimization perspective. The analysis
requires, first, a cost model that quantitatively reflects both classes of design goals.
The wireless devices may, then, employ routing selection, power and topology con-
trol, to minimize system-wide cost functions, determined by the considered cost
model [98]. In other approaches, the desired trade-off between load-balancing and
reliability of traffic delivery is reflected in the routing and MAC protocol param-
eterization [99]. This allows WSNs to dynamically – and in a distributed fashion
– adapt to temporal changes in the traffic workload and the link quality in the
network.

Several application scenarios lead to dynamic and self-organized sensor net-
works, where the assumption of system-wide optimization can not be easily justified
[100]. In certain cases, wireless devices might be owned by different entities, with
an objective of maximizing their own performance. Scenarios with nodes having
self-optimizing, or selfish goals, are, in principle, studied applying game-theoretic
tools. A key question in such cases, is whether the wireless devices can coverge to
stable network operation points, namely Nash equilibria (NE), where nodes max-
imize their individual performance that reflects both a high node lifetime, and a
low delay overhead [101][102]. Certain contributions demonstrate that Nash equi-
libria do not always exist under cost models reflecting contradictory objectives [98].
Several other studies employ constructive methodology, to prove that such NE ex-
ist, by formulating iterative games that lead to stable energy efficient topologies
[103][100][104].

In an attempt to guarantee stable network formations, a few interesting ap-
proaches re-formulate the game-theoretic model of the topology control to extend
the space of strategies for the wireless devices by introducing bilateral negotiations
between wireless nodes that wish to form communication links [105][106]. We follow
a similar approach in Paper F, where the wireless nodes negotiate the quality of
traffic relaying they offer, in addition to selecting routing paths for their own traf-
fic. We show that such a strategy space expansion leads to stable Nash equilibrium
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topologies, even when the wireless devices aim for both node lifetime, as well as
QoS maximization.

Duty-cycling in wireless sensor networks
Duty-cycling in wireless sensor networks is implemented based on periodic radio
wake-up [85] and transition to sleep state, unless traffic needs to be exchanged by
the sensor device. Such a scheme achieves high sleep ratio, in case of low traffic
demand, where nodes sleep most of the time. Key design aspects, which characterize
the duty-cycling efficiency are the sleep and wake-up scheduling at the sensors [107].
Schemes with fixed wake-up and doze time lengths, and, eventually, sleep ratios [85]
perform well when the traffic demand remains fairly stable over time. In case of
temporal variations in traffic workload, agile duty-cycling schemes [107] adapt the
durations of wake-up and sleep time for higher energy savings. Further efficiency
can be achieved through dynamic duty-cycling schemes [108], where idle listening is
restricted to a short time interval in the begining of the wake-up period, or where
appropriate signaling enables nodes to dynamically end the wake-up time upon
completion of traffic exchange.

WSNs achieve further energy saving gains when employing interference-aware
sleep transition policies [109]. In Paper D, WSN devices sense the channel in the
beginning of a wake-up period and transit immediately to sleep mode, if channel
activity is detected, so as not to risk a possible frame collision due to overlapping
transmissions with interfering radio activity.

Despite the undeniable energy savings, duty-cycling can introduce a significant
delay overhead in multi-hop traffic delivery, particularly in case sensors sleep for
long periods. Opportunistic routing under duty-cycling aims at minimizing the
delay overhead, by dynamically relaying sensor traffic via any neighboring nodes
that are awake and geographically closer to the destination node [110]. From the
system-optimization perspective, the duty-cycling ratio may be jointly optimized
along with multi-path routing and duty-cycle scheduling, under target delivery
delays, and connectivity requirements, the energy efficiency of the sensor network
can be minimized by determining optimal values for the sleep ratio and the wake-up
schedule of the sensors [111].

A major challenge inWSN duty-cycling is how to achieve schedule-synchronization
between the communicating sensor nodes. Exessive signaling overhead, large node
populations, node mobility, or churn do not allow for controlling the duty-cycle
schedules of the network nodes in a centralized fashion. Transmitter-receiver ren-
dezvous in time is, therefore, achieved, on the basis of transmitter-initiated duty-
cycle MAC protocols [112], where potential transmitters use frame preambles to
wake-up the intended receivers. Approaches like [113] rely on periodic channel
sampling checking for preambles that indicate upcoming packet transmissions. In
the same context [114] reduces excessive preambling applying short strobbing, which
additionally embedds target receiver addressing to wake-up only the intended re-
ceiver. Instead of using preambling, [115] employs opportunistic schedule learning
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Figure 3.1: Power-saving mode in IEEE 802.11 ad hoc networks.

where WSN devices obtain the scheduling information of nodes within their physi-
cal neighborhood by overhearing data transmissions, while in [116] synchronization
is achieved through periodically broadcasting scheduling information.

Duty-cycle synchronization is, however, not perfect due to hardware imperfec-
tions leading to CPU clock drifts at the WSN devices, and thus, synchronization
gaps need to be taken into consideration when designing duty cycling-based pro-
tocols for WSNs. A common approach to mitigate the effect of synchronization
offsets is by slightly increasing the duration of either preamble transmissions or idle
listening [116] [113]; a similar approach is implemented in Paper D where sensors
wait for a period equal to the maximum synchronization offset before attempting
frame transmissions, to guarantee that the intented receiver is awake.

3.3 Duty-cycling in WLAN Ad hoc Networks

The energy consumption of the 802.11-based radio operation is significantly higher
compared to 802.15.4-based radio link layers – commonly used in WSN devices –
offering, in exchange, higher communication ranges and transmission rates. Such
communication characteristics may be beneficial in sensor applications involving
generation of a large amount of data traffic. In addition, 802.11 enables sensor
devices to interact directly with consumer electronics, such as smartphones, tablets
or laptops, that is, market segments where WLAN connectivity dominates over
alternative wireless technologies.

However, due to the large transmission energy consumption, 802.11 radio opera-
tions can quickly drain the batteries of energy-constrained WLAN-enabled devices.
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Therefore, 802.11 duty-cycling, as a means of power-saving, is crucial for enabling
WLAN connectivity in WSN and IoT applications [117]. For this reason radio
duty-cycling, has been standardized for IEEE 802.11 for both infrastructure (BSS)
and ad hoc (IBSS) network mode, and is denoted as Power Saving Mode (PSM)
[88]. In 802.11 infrastructure networks, stations in power-save mode remain in doze
state if they have no traffic to transmit, and wake-up periodically in order to check
whether they need to receive data from the access point. Traffic indications for
each associated station are embedded in the beacon frame sent periodically by the
access point.

In 802.11 ad hoc networks, all stations have synchronized duty-cycle schedules,
and compete for a beacon transmission at the beginning of a duty-cycle period
(Fig. 3.3), defined as beacon interval. Stations in power saving mode must transit to
the awake state at the beginning of the duty-cycle. The stations announce pending
data traffic to other stations by transmitting unicast, short traffic announcement
(ATIM) frames. ATIM frames are transmitted and acknowledged during the ATIM
window, during which all stations are awake. After the expiration of the ATIM
window, stations transit to doze state for the remaining of the duty-cycle, if they
have not been involved in an ATIM/ACK message exchange.

802.11 PSM defines a non-adaptive duty-cycle scheme for decreasing the idle
listening at WLAN stations. Interesting research directions in the literature propose
protocol enhancements for the 802.11 PSM operation in infrastructure WLANs
[118]–[125], involving load driven wake-up scheduling, and joint time division and
power control optimization, aiming for further energy preservations through higher
achievable sleep ratios. In ad hoc WLANs enhancing the standard PSM involves
the introduction of mechanisms for early transition to the doze state [123], [126]–
[129], by including additional information in the ATIM frames [126], or by delaying
a beacon transmission attempt [123], indicating, implicitely, the lack of pending
traffic.

A key approach towards higher sleep ratios is the optimization of the ATIM
window length. [127] maximizes the percentage of time the stations remain in
doze state by optimizing the duration of the ATIM window subject to throughput
constraints for a given traffic workload at the stations. A major challenge in the ad
hoc 802.11 PSM is the signalling overhead, imposed by the unicast ATIM frames at
each beacon cycle. PSM signaling may be significant in case of multiple concurrent
source-destination traffic flows in a WLAN. Exploiting ATIM frame overhearing
[130], [131] and deferring from ATIM transmissions is a promising solution towards
lower PSM signaling overhead.

Despite the achieved energy savings, PSM results in significant frame delivery
delays, as data may need to be buffered at intermediate stations, and delayed
until the following beacon interval, when a new ATIM exchange process will notify
the next-hop station towards the final destination to remain active and receive
the packet (Fig. 3.3). To limit the multi-hop end-to-end latency solutions target
MAC and routing cross-layer approaches, classified as static [128] – where the ad
hoc networks are organized hierarchically forming a back-bone with PSM-disabled
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stations – or on-demand [132], where stations temporarily disable duty-cycling, if
they are notified from on-demand routing protocols that they may need to relay
traffic. Inversely, the routing protocol may on-demand select the packet forwarding
paths based on knowledge of the current power saving status of the stations [133].

The challenge of decreasing the end-to-end latency in multi-hop 802.11 ad hoc
networks can be addressed effectively, if stations that implement duty-cycling can
dynamically adapt to instantaneous end-to-end traffic demand and defer from tran-
sitions to doze state, so that packets can be forwarded within the same beacon in-
terval. This can be realized through cognitive path prediction mechanisms, where
stations infer whether they need to remain awake, based on overheard traffic an-
nouncements associated with past end-to-end transmission flows [134]. Such ap-
proaches achieve high energy and delay efficiency, paticularly in networks with
traffic bursts that are long enough so that stations learn the end-to-end path flows
and remain awake until the whole data stream is forwarded to the destination sta-
tion. In scenarios with sporadic, or very dynamic traffic workload, the performance
of path learning mechanisms is limited. In such cases, the objective for joint energy
and delay efficiency can be addressed effectively, if stations can immediately infer
the final destination of an 802.11 frame and wake-up all involved stations on the
routing path, at the event of frame generation or reception. In Paper E we address
the above issue by proposing a cross-layer approach, where WLAN stations em-
bed the MAC address of the final destination of a WLAN packet inside the ATIM
message. Upon receiving ATIM frames, the stations can determine the destination
node of a pending 802.11 packet, and can, therefore, forward the received notifi-
cation to the next-hop station in the routing path, in the current ATIM window.
Under such scheme all stations involved in the end-to-end delivery will be notified
to remain awake in the current beacon interval. Therefore, the WLAN packet may
arrive at the final destination with minimum delay overhead.





Chapter 4
Analytic Models, Methods &

Evaluation Tools

This Chapter presents an overview of the main analytic scientific methods and eval-
uation tools that are used in the context of this thesis. We begin with the main
theoretic background for spectrum sensing techniques and for interference modeling
in wireless networks. Spectrum sensing has been studied in Paper A, while interfer-
ence modeling has been considered for the cognitive MAC design in Paper B. We
give a brief introduction on stochastic modeling in wireless networks that has been
considered extensively in this work. We continue, by presenting the basic theoretic
tools for distribution fitting, parameter estimation, and stochastic model valida-
tion, which we later employ in Papers C and D for WLAN spectrum occupancy
characterization. We close the Chapter by introducing, briefly, our simulation plat-
forms and implementation tools, based on which we evaluated our protocol design
proposals in Papers B and E.

4.1 Modeling of the Physical Interference

As discussed in Section 2.2 the physical interference model aim at describing the
success of a frame transmission in the presence of temporary overlapping transmis-
sions in the neighborhood of the receiving device. Therefore, the interference model
relies on the underlying signal propagation model.

Under a path-loss-based signal attenuation model [135], the received signal
power, PRx(r), degrades with the distance, r > 0 between the transmitting and
receiving device:

PRx(r) = P0 · PL0r
−η (4.1)

where PL0 , η denote the signal attenuation at a reference (one meter) distance, and
the path-loss exponent, respectively. In order to correctly decode a received packet,
a terminal needs to receive it with a Signal to Noise plus Interference Ratio (SINR)

29
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greater than a given threshold, ζSINR. Assuming the existence of a single interfering
node at distance RINT, the SINR under a path-loss model becomes:

SINR = P0PL0r
−η

PINTPL0R
−η
INT + σ2

N

(4.2)

where PINT, σ
2
N denote the power of the interfering signal and AWGN, respectively.

The considered SINR threshold combined with the path-loss channel model result
in a disk interference model, that is a circular interference zone around the receiving
terminal, with interference radius, RI :

RI(r, ζSINR, PINT, P0) , η

√
ζSINRPINTPL0

P0PL0r
−η − ζSINRσ2

N

. (4.3)

In the event of a temporal overlap between a frame reception and a transmission
within the interference zone defined by (4.3), the outcome is a frame collision,
resulting in a packet loss event. It is clear that under a fixed SINR threshold the
interference radius can be decreased by either increasing the transmission power,
P0, or by decresing the transmission distance, r.

The disk interference model is ideal, as it presents a clear geographic boundary,
between the area where frame collision occurs with probability 1, and the area
where interference from overlapping transmissions is not harmful. In the presence
of shadow fading on the channel, the disk interference model is no longer valid, as the
collision events depend on the instantaneous shadowing gains on the transmission
and on the interfering link.

Under log-normal shadowing [135] the shadowing gain on a transmission link is
modelled by a log-normal random variable, thus, (4.1) is extended as:

PRx(d, ζ) = P0 · PL0 · r−η · 10ζ/10, (4.4)

where ζ is an instance of a zero-mean Gaussian variable, Z with standard deviation,
σsh:

fZ(ζ) = 1
σsh
√

2π
e
− ζ2

2σ2
sh .

Consider that Z0, ZINT denote the shadowing gains on the transmission and on the
interference link. Assuming identical and independent distributions, the instanta-
neous interference radius RI is a function of the shadowing realizations:

RI(r, ζINT, ζ0, P0, PINT) = η

√
ζSINRPINTPL010ζINT/10

P0PL0r
−η10ζ0/10 − ζSINRσ2

N

. (4.5)

In addition, channel shadowing has an impact on the performance of spectrum
sensing. The missed detection probability, pMD, defined in Section 2.2, depends on
the received signal power at the sensing device, that is a function of the shadowing
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Figure 4.1: A generic two-state stochastic channel occupancy model

gain. Assuming that the gains, ζINT, is constant within a spectrum sensing period,
ts, the missed detection probability must be averaged over the distribution of the
shadowing gain:

pMD(ts, RINT) ,
∫ ∞

0
pMD(ts, RINT, ζINT)fZ(ζ)dζ, (4.6)

while the channel shadowing, clearly, has no effect on the false alarm probability,
pFA.

As we show in Paper B channel shadowing introduces uncertainty in the spatial
distribution of the interfering sources resulting in lower transmission efficiency in
the flat coexistence scenario.

4.2 Stochastic Models for Channel Activity in Wireless
Networks

Background
The channel activity, or channel usage, in wireless networks is, in general, a stochas-
tic process that reflects the status of the wireless medium, whether it is active or
idle. The channel activity is strongly correlated with the traffic arrival process
at the network nodes [136][137]. Its stochastic properties depend, additionally, on
the medium access protocol that involves, in general, randomized channel access
operations [33][60].

Based on the above consideration, we can use, in the simplest scenario, a two-
state model to describe the temporal evolution of the channel status in a wireless
network. This model is shown in Fig 4.1. The generic functions, fA(t), fI(t), denote
the probability distributions of the active, and idle channel durations, respectively.
As the channel status constantly alters between active and idle state, we can define
the stochastic processes, PTA , PTI , that describe the sequences of active and idle
channel period durations. Thus, TI(k), denotes the duration of the k-th idle period.
TI(k) is randomly distributed with density function fI(t).

In general, the random processes, PTA , PTI , are not white, that is, the process
sample values at different sequence indexes are correlated. The correlation is quan-
titatively evaluated by the auto-correlation functions, RTA(τ), RTI (τ), which are
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defined as:
RTA(τ) = E[(TA(k)− µTA)(TA(k + τ)− µTA)]

σ2
TA

. (4.7)

RTI (τ) = E[(TI(k)− µTI )(TI(k + τ)− µTI )]
σ2
TI

. (4.8)

Under the assumption of the absence of correlation, the channel activity model is
classified as semi-Markovian[61]. The model becomes a Markovian one, if, addi-
tionally, fA(t), fI(t) are exponential distributions [23].

To capture more accurately the behavior of the channel status, we can extend
the two-state model to a finite state model, where, in each state, the channel is either
active or idle, however, the durations of the active or idle periods are not drawn
from the same distributions. Multi-state models can better capture the behavior
of the channel status, as a function of traffic arrival and protocol dynamics, at the
expense of higher complexity.

Under wireless coexistence scenarios, discussed in Chapter 2, a wide range of
network protocol mechanisms may be optimized based on the knowledge of the
stochastic patterns of the channel activity. The accuracy of the applied models
is critical for the performance of protocol optimizations. In the remainder of this
Section we present a brief overview of the analytic tools and methodologies for
model parameter estimation and verification, that have used in the context of this
thesis.

Parameter estimation techniques
Parameter estimation refers to the procedure of determining the parameters of the
functions that constitute the model components, based on a finite set of samples
collected from the actual random process that is the subject of our modeling. The
estimation of parameters is conducted using distribution fitting techniques, i.e.
we determine the appropriate parameter values, for which the analytic distribution
matches closely with the empirical one that is generated using the collected samples.

Maximum likelihood estimation

Consider a random variable T probability density function, fT (t|θ), t ∈ R, where,
θ = {θ1, . . . , θK} denotes the vector of the parameters of the density function. The
estimation of the parameter set relies on a set of M samples, (or realization) of the
random variable, T : {t1, . . . , tM}.

Based on the collected samples, themaximum likelihood estimator (MLE), deter-
mines the set of parameters as the solution of the following maximization problem:

θ∗ = {θ∗1 , . . . , θ∗K} = arg max
θ1,...,θK

fT1,...,TM (t1, . . . , tM |θ1, . . . , θK) (4.9)

where fT1,...,TM (t1, . . . , tM |θ1, . . . , θK) denotes the joint distribution density consid-
ering all the collected samples. Assuming an uncorrelated sequence of distribution
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realizations, (4.9) reduces to

θ∗ = {θ∗1 , . . . , θ∗M} = arg max
θ1,...,θK

M∏
m=1

fTm (tm|θ1, . . . , θK) . (4.10)

or, if considering the log-likelihood:

θ∗ = {θ∗1 , . . . , θ∗M} = arg max
θ1,...,θK

M∑
m=1

log [fTm (tm|θ1, . . . , θK)] . (4.11)

We derive the numerical solution of (4.10) by forcing the partial derivatives to
zero:

θ∗ = {θ∗1 , . . . , θ∗M} = argθ1,...,θK

{∑M
m=1 ∂ log [fTm (tm|θ1, . . . , θK)]

∂θK
= 0,∀k

}
.

(4.12)
In Paper B we apply a MLE estimator for deriving the parameters of the generalized
Pareto distribution [138] that is employed for modeling the heavy tailed behavior
of the 802.11 white spaces, based on a modified estimator developed in accordance
with [139], to account for a left-truncated nature of the white space distribution.

Estimation in the Laplace domain

The MLE-based estimation can be applied when the closed-form expression of the
probability density function, fT (t|θ), exists. There are, however, cases of distri-
butions that lack a closed form expression in the probability domain. Such cases
include, most commonly, composite variables that are the result of the superposition
of individual, random variables.

In some particular scenarios, where this superposition comprises summations of
uncorrelated variables, it is possible to derive a closed-form expresion in the Laplace
domain of a variable,

f∗T |θ(s) =
∫ ∞

0
fT (t; θ)e−stdt. (4.13)

by expoiting the Laplace transform (LT) property that the sum of independent
random variables leads to a joint density function, whose LT is the product of the
individual transforms of each variable:

In case of finite discrete random summations, the derivation of the LT expression
requires the generating function of the discrete distribution that models the random
sum. Consider, for instance, that we need to calculate the LT of the following
variable:

TN =
N∑
i=1

T (i), (4.14)
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where T (i) ∝ T and, N is a discrete variable with probability mass function pN .
The generating function of the random variable N is:

GN (z) =
∞∑
k=0

pN (k)zk. (4.15)

The, the LT of TN is given by:

f∗TN
(s) = GN (f∗T (s)) . (4.16)

The above property is applied in [75] and in Paper C, where we derive the
Laplace transform of the partially-observed WLAN idle time distribution, as a
geometrically distributed sum of WLAN cycles, consisting of consequtive idle an
active WLAN periods. Due to this complex combination, the idle time distribution
lacks a closed-form expression. Therefore, as MLE can not be applied for deriving
the optimal distribution parameters, we develop a heuristic estimation method
that relies on the one-to-one correspondence between the Laplace transform and
the probability density function [76]. We determine the optimal values for the
parameter set as the solution to the following minimization problem:

θ∗ , {θ1, . . . , θK} = arg min
θ1,...,θK

1
S

S∑
k=0

[f∗T (sk|θ)− f∗Te(sk; τ )]2 (4.17)

where S = {s0, . . . , sS} is a finite discrete subset of the s−domain, and f∗Te(sk; τ ) is
the empirical LT with respect to the parameter set, θ, calculated from the collected
distribution sample sequence, τ = {t1, . . . , tM}. In Paper C we show that the
empirical LT of a random distribution can be calculated on the fly, from the sample
sequence as follows:

f∗Te(sk; τ ) = 1
M

M∑
m=1

e−sktm (4.18)

Discussion We stress that the outcome of the minimization of (4.17) does not
necessarily correspond to the MLE-based estimation of (4.9). The developed heuris-
tic method is, instead, based on the uniqueness of the Laplace transformation,
and on the a-priori considered assumption that random distributions with similar
Laplace transforms exhibit similar stochastic behaviors. The performance of the
proposed heuristic method is assessed in Paper C and in [75], where we evaluate the
parameter estimation errors when the heuristic is performed on sample sequences
with given parameter sets. In [75] we study the effect of the sample seuqence lengths
on the parameter estimation accuracy. We show that the proposed algorithm leads
to efficient parameter estimation under sequence lengths in the order of 102 to 103,
while the estimation errors are practicaly eliminated under input sequences with
a length of 104 to 105 samples. The following Section introduces the reader to
stochastic optimization-based methodologies for solving the optimization problem
in (4.17).
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Discrete stochastic optimization

Optimization problems of the form

K∗n := arg min
Kn∈K

{c(n)} (4.19)

can be solved by applying traditional optimization tools [140], when the objective
function, c(n), has a deterministic and closed analytic form. Instead, when the ob-
jective function includes stochastic components, optimization is, generally, a harder
problem, as the exact relation between the function value with respect to the vari-
ables under optimization is obscured. Stochastic optimization constitues a general
category of methodologies for solving optimization problems, whose objective func-
tions are functions of random variables. Consider the simplest setting of a discrete
stochastic optimization problem:

K∗ = arg min
Kn∈K

{c(n) = E[XKn ]} (4.20)

where c(n) = E[XKn ], is the expectation of a random variable X, whose distri-
bution depends on the variables, Kn, under optimization. Simulation-based tech-
niques are employed, when the expectation E[XKn ] can be determined based on
a sequence, {XKn}, of observations obtained via simulations. The optimization
problem is discrete, when the sample spaces of the variables under optimization
are countable sets. Brute force methods, including an exhaustive calculations over
all sample space points are, clearly, inefficient for large sample spaces. Approaches
such as [78], address the problem by constructing a discrete Markov model over
the sample space and study the conditions for convergence to global minima of the
objective function. [141] proposes a sample average approximation method for solv-
ing discrete stochastic optimization problems with uncostrained objective functions
with finite variance. The work assumes a white sampling process over the random
objective function and shows that the proposed methods converges to the opti-
mal values under un-constrained sample sizes. In [142] simulation-based stochastic
programming is extended to cover constrained optimization problems. A typical
consideration in discrete stochastic optimization theory is the covergence rate of the
proposed techniques [78], [141], [143], [144]. This consideration is critical in case
the stochastic objective function includes time-variant components, and, therefore,
time-variant global minimizers. [145] proposes a random-search, Markov-based
algorithm that exhibits fast-convergence properties, thus, performing well under
stochastic objective functions with high temporal dynamics.

In the context of our work the derivation of the optimal values of (4.17) shall
be combined with the process of collecting the sample sequence, {t1, . . . , tM}, on
the basis of an iterative algorithm, where the new samples refine the output of the
optimal values. This approach is similar to the ones presented in [78], [141] and has
two important advantages. First, the collected samples do not need to be stored
in advance before the estimation process begins, limiting the required algorithm
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memory. Second, by enforcing smart stopping rules, the execution time – with
respect to the number of iterations – can be reduced. In the following we detail the
desciption of the adopted discrete stochastic optimization methodology.

The iterative stochastic optimization algorithm [78] aiming at solving the prob-
lem of Eq. (4.20), has a discrete and finite set of states,

K , {K1, . . . ,KK}

that correspond to the set of possible outcomes of the algorithm. Denote by L =
{L1, . . . ,LL} ⊂ K the set of global minimizers of the function c, i.e.

∀Li ∈ L,Kn ∈ K \ L, c (Li) < c(Kn) (4.21)

∀i, j = 1, 2, ..., L, c(Li) = c(Lj). (4.22)
Stochastic optimization algorithms take {XKn} as the input and outputs an element
Li ∈ L. The algorithm is iterative, that is, it involves a search process that repeats
itself as more samples of the random sequence are obtained from the sampling
process.

Searching initiates from an arbitrary state, Ki ∈ K. In each iteration step,
m, the process selects a new state, Kj 6= Ki, uniformly at random, and obtains
the observation of a random variable ZKi→Kjlm

, which is a function of the random
variables {XKi}lm , {XKj}lm . In general, lm is a function of the iteration step,
m. In most of the cases, however, it is convenient to define lm as the total num-
ber of random observations obtained until iteration m. {XKj}lm , {XKi}lm denote
the current estimation of c(j), c(i), respectively, given the collected samples. The
stochastic optimization algorithm moves to the new state Kj , if Z

Ki→Kj
lm

> 0.
We denote by Km the algorithm state after iteration m and with Qm(Kn) the

popularity of state Kn, that is the total number of times the algorithm has visited
(or remained at) state Kn ∈ K until iteration m. The output of the algorithm is
chosen as the most popular state.

Discussion Due to the random selection of the next candidate state at each
iteration step, the algorithm corresponds to a discrete time, discrete space Markov
process, where the state space is the set K. The transition probabilities, however,
are time-variant as they depend on the current number of collected samples that
refine the empirical distribution of the sampled process.

In [78] it is shown that the algorithm converges almost surely to a minimizer
of c(n), that is, a member of L, after sufficiently large number of iterations, if the
following conditions hold:

Condition 1. For each Ki,Kj ∈ K and l ∈ N, there exists a random variable
Z

(Ki→Kj)
l such that the limit liml→∞ P{Z(Ki→Kj)

l > 0} exists for all Ki,Kj ∈ K
and for all Ki ∈ L,Kj /∈ L,Kn 6= Ki,Kj, and l ∈ N,

lim
l→∞

P{Z(Kj→Ki)
l > 0} > lim

l→∞
P{Z(Ki→Kj)

l > 0}, (4.23)
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lim
l→∞

P{Z(Kn→Ki)
l > 0} ≥ lim

l→∞
P{Z(Kn→Kj)

l > 0}, (4.24)

lim
l→∞

P{Z(Ki→Kn)
l ≤ 0} ≥ lim

l→∞
P{Z(Kj→Kn)

l ≤ 0}. (4.25)

Condition 2. {lm} is a sequence of positive integers such that lm →∞ as m→∞.

Condition 3. The Markov matrix P defined in the following equations is irre-
ducible.

P(Ki,Kj) = 1
K − 1 lim

l→∞
P{Z(Ki→Kj)

l > 0} ∀Ki,Kj ∈ K,Ki 6= Kj , (4.26)

P(Ki,Ki) = 1
K − 1

∑
Kj∈K\{Ki}

lim
l→∞

P{Z(Ki→Kj)
l ≤ 0} ∀Ki ∈ K. (4.27)

The above result is asymptotic, i.e. convergence is guaranteed after an infinite
number of iterations. In practical cases, however, a stopping rule is required to
limit the algorithm execution time. In [75] we define both the maximum number
of iteration steps, and a stopping rule based on the number of consequent iteration
steps that the algorithm remains in the same state. The maximum number of
iterations is determined by the length of the sample sequence and the number of
samples integrated into the algorithm at each iteration step.

In Paper C we apply the described stochastic optimization algorithm for the
estimation of the distribution parameters of the 802.11 idle period duration, which
presents a closed form expression in the Laplace domain, and show that the afore-
mentioned conditions are satisfied ensuring the convergence of the algorithm.

Model validation tools
Stochastic model validation provides us with an analytic framework for verifying
whether a physical random process can be accurately described by a stochastic
model. In the context of this thesis, model validation is performed by analytic
techniques, discussed briefly in this Section.

Goodness-of-fit

First, we aim at evaluating how well a derived analytic stochastic model fits a
set of real observations originating from a considered random process; a procedure
described as a goodness-of-fit evaluation.

D-value: Goodness-of-fit is quantitatively assessed based on the D-value of the
Kolmogorof-Smirnoff test, which is defined as the supremum of the differences
between the estimated analytic distribution model and the empirical distribution
generated by the set of collected samples:

D = sup
tm∈τ

∣∣∣FT (tm; θ̂)− FTemp(tm; τ )
∣∣∣ . (4.28)
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In (4.28) τ is a sequence of real samples collected from the considered random
process, θ̂ is the vector of estimated parameters, while FT , FTemp denote the analytic
and empirical cumulative distribution functions, respectively, which are evaluated
on the values of the collected samples. A low D-value indicates the good fitting
performance of the analytic model. We underline, however, that the D-value is a
conservative goodness-of-fit metric, as it considers the supremum of the point-wise
difference between the two functions, instead of the average.

Kolmogorof-Smirnoff test: The D-value measures the fitting offset between
the empirical distribution and its candidate analytic fit. A goodness-of-fit test
assesses the probability that the collected samples of a given random process do
originate from the fitted analytic distribution. In this thesis we employ the two-
sample Kolmogorof-Smirnoff (K-S) test [74]. In particular, we evaluate the K-S
null hypothesis, i.e. the probability that a sequence of samples generated from the
candidate analytic fit can originate from the same distribution as the sequence of
the real collected samples. The evaluation is done considering the two-sample K-S
statistic:

Kn =
√
n

2 sup
tm∈τ ,t̂m∈τ̂

∣∣∣FTemp(tm; τ )− FT (t̂m; τ̂ , θ̂)
∣∣∣ , (4.29)

where τ̂ denotes the sample sequence from the fitted analytic distribution, and
n is the length of both sequences. The null hypothesis is assessed by calculating
the p−value of the test, that is the probability of obtaining a test statistic, Kn,
at least as extreme as the observed one. The null hypothesis is rejected at a
significance level α ∈ (0, 1), if Kn > Kα, where Kα is the critical value [74] defined
as Kα = k : Pr{Kn > k} < α. Typical values of the significance level are α = 0.1
or α = 0.05.

In Paper B we apply the two-sample K-S test in order to verify or reject the
stochastic model that aims at capturing the random process of the 802.11 idle
channel durations.

Whiteness property validation

White random processes have the fundamental property that the generated samples
are uncorrelated random variables. Such a property is often desired, as it simplifies
the stochastic analysis of complex systems. It is, however, not always possible to
either justify or verify the assumption of a white random process based on the
system functional properties. Therefore, before being introduced as an assumption
in the system model, the whiteness property of a random process needs to be
experimentally validated.

The whiteness of a stochastic process is, traditionally, verified by inspecting the
autocorrelation of the sample series generated by the process:

RT (i) =
n−i−1∑
m=0

tm+i · tm, tm ∈ R, ∀m (4.30)
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A non-zero lag-i autocorrelation, i > 0, implies lack of independence among the
generated process samples. In most of the cases, howerver, we need to decide on
the whiteness of a sample sequence based on a limited number of input samples,
which, in general, results in RT (i) 6= 0, for i > 0. One solution to this challenge is to
compare the statistical behavior of the lag-1 autocorrelation of the input sequence
against the lag-i autocorrelation of a white reference, that is, a sequence of random
samples assumed to be uncorrelated. In case the autocorrelation outputs of the
compared processes have significantly different statistical properties, we can safely
assume that the input sequence exhibits correlation among the generated samples,
and, therefore, the whiteness is not validated. In Paper B we design a test for
independence based on this principle, and use it for the characterization of the
802.11 channel usage process in terms of whiteness.

4.3 Simulation Tools

Network simulation tools enable the evaluation of networking scenarios where the
complexity limits the applicability of analytically-based performance studies. The
particular selection of the appropriate simulation tools is based on the following set
of criteria.

An appropriate network simulation tool must provide accurate mathematical
models for the real phenomena that are expected to affect the network performance,
such as signal propagation and interference models or packet error rate models. A
modular, or component-based structure of a network simulation is desirable, as it
facilitates the protocol design and evaluation, allowing for direct testing of a specific
network component (e.g. a protocol) by plugging it in the appropriate position in
the protocol stack. Simulators should also be extensible to enable the design of
additional features or components without major modifications in the rest of the
simulator platform.

NS-Miracle: The NS-Miracle framework [146], which is based on the popular
NS-2 simulation platform, fulfills the aforemention design criteria, and has, there-
fore, been selected as the platform for the simulation-based evaluation within the
context of this thesis. In addition, NS-Miracle offers a broad set of wireless network
protocols already implemented and extensively tested, allowing for rapid implemen-
tation and evaluation of customized network stacks. Our work in Paper D and in
[24], [75], [109] benefits from the feature-rich implementations of the IEEE 802.11
and 802.15.4 protocol variations, while the detailed NS-Miracle physical layer and
channel modeling makes it higly attractive for the wireless coexistence scenarios
discussed in Chapter 2. The simulation-based study in Paper D is applied to val-
idate the numerical evaluation of the proposed cognitive access mechanism, which
is conducted based on a simplifying set of model assumptions and approximations
for analytic tractability.
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MiXiM framework: The MiXiM framework is an extension of the Omnet++
simulation platform featuring similar libraries for wireless network protocols as
NS-Miracle. MiXiM facilitates the debugging of the implementation code, mainly
due to its graphical accessories that offer a direct, real-time illustration of network
protocol operations. In addition, its statistic toolboxes facilitate the collection
of measurement data and its aggregation into network performance statistics. In
[59] we have used MiXiM’s detailed traffic generation libraries for implementing
the various 802.11 traffic workload scenarios for the purpose of WLAN channel
occupancy characterization.

Jemula: The Java Emulator (Jemula) framework [147] has been used for the
simulation development in the context of our work in [148] [149]. Jemula facilitates
protocol development and debugging owing to its Java-based implementation, and
offers an advanced, real-time graphical interface for protocol operations. Its 802.11
protocol library makes Jemula suitable for the evaluation of the proposed power-
save 802.11 MAC enhancements; the lack of detailed physical layer modeling is,
however, a major challenge not only for wireless coexistence scenarios, but also for
standalone, dense ad-hoc 802.11 network deployments with frequent frame colli-
sions.



Chapter 5
Summary of Original Work

Paper A: Spectrum sharing with low power primary networks
Ioannis Glaropoulos, and Viktoria Fodor
Published in Proc. of IEEE Dynamic Spectrum Access Networks (DySPAN), 2014.

Summary: Access to unused spectrum bands of primary networks requires a
careful optimization of the secondary cooperative spectrum sensing, if the trans-
mission powers in the two networks are comparable. In this case the reliability
of the sensing depends significantly on the spatial distribution of the cooperating
nodes. In this paper we study the efficiency of cooperative sensing over multiple
bands, sensed and shared by a large number of secondary users, which form an ad-
hoc cognitive network. We show that the per-user cognitive capacity is maximized,
if both the number of bands sensed by the secondary network as a whole, and the
subsets of these bands sensed by the individual nodes are optimized. We derive
the fundamental limits under different sensing duty allocation schemes. We show
that with some coordination the per user cognitive capacity can be kept nearly
independent from the network density.

The author of this thesis performed the work presented in this paper under the
supervision of the second author.

Paper B: Energy efficient COGnitive MAC for sensor networks under
WLAN co-existence
Ioannis Glaropoulos, Marcello Laganà, Viktoria Fodor, and Chiara Petrioli
To appear in IEEE Transactions on Wireless Communications, 2015.

Summary: Energy efficiency has been the driving force behind the design of
communication protocols for battery-constrained wireless sensor networks (WSNs).
The energy efficiency and the performance of the proposed protocol stacks, how-
ever, degrade dramatically in case the low-powered WSNs are subject to interference
from high-power wireless systems such as WLANs. In this paper we propose COG-
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MAC, a novel cognitive medium access control scheme (MAC) for IEEE 802.15.4-
compliant WSNs that minimizes the energy cost for multihop communications, by
deriving energy-optimal packet lengths and single-hop transmission distances based
on the experienced interference from IEEE 802.11 WLANs. We evaluate COG-
MAC by deriving a detailed analytic model for its performance and by comparing
it with previous access control schemes. Numerical and simulation results show
that a significant decrease in packet transmission energy cost, up to 66%, can be
achieved in a wide range of scenarios, particularly under severe WLAN interference.
COG-MAC is, also, lightweight and shows high robustness against WLAN model
estimation errors and is, therefore, an effective, implementable solution to reduce
the WSN performance impairment when coexisting with WLANs. The author of
this thesis performed the major part of the work presented in this paper, including
the analytic modeling and optimization of COG-MAC, the numerical performance
evaluation and the design of the simulation experiments. The second author has
contributed in the design of the NS simulator, upon which the simulation-based
evaluation was conducted. The author of this thesis wrote and revised this paper
together with the third author, based on the feedback offered by the fourth author.

Paper C: Discrete Stochastic Optimization Based Parameter Estimation
for Modeling Partially Observed WLAN Spectrum Activity
Ioannis Glaropoulos, and Viktoria Fodor
Published in Infocommunications Journal, 2012.

Summary: Modeling and parameter estimation of spectrum usage in the ISM
band would allow the competing networking technologies to adjust their medium
access control accordingly, leading to the more efficient use of the shared spectrum.
In this paper we address the problem of WLAN spectrum activity model param-
eter estimation. We propose a solution based on discrete stochastic optimization,
that allows accurate spectrum activity modeling and can be implemented even in
wireless sensor nodes with limited computational and energy resources.

The author of this thesis performed the work presented in this paper under the
supervision of the second author.

Paper D: Closing the gap between traffic workload and channel occu-
pancy models for 802.11 networks
Ioannis Glaropoulos, Alexandre Vizcaino Luna, Viktoria Fodor, and Maria Pa-
padopouli
Published in the Elsevier Journal of Adhoc Networks, 2014.

Summary: The modeling of wireless network traffic is necessary to evaluate the
possible gains of spectrum sharing and to support the design of new cognitive pro-
tocols that can use spectrum efficiently in network environments where diverse
technologies coexist. In this paper we focus on IEEE 802.11 wireless local area net-
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works and close the gap between two popular levels of modeling, macroscopic traffic
workload modeling and microscopic channel occupancy modeling. We consider traf-
fic streams generated by established traffic workload models and characterize the
networking scenarios where a simple, semi-Markovian channel occupancy model
accurately predicts the wireless channel usage. Our results demonstrate that the
proposed channel occupancy model can capture the channel idle time distribution
in most of the scenarios, while the Markovian assumption can not be validated in
all cases.

The author of this thesis performed the major part of the work presented in this
paper, under the supervision of the third author, and based on the suggestions and
feedback provided by the fourth author. The second author of the paper performed a
significant part of the simulation experiments in Section 5. The paper was written
by the author of this thesis in collaboration with the third author.

Paper E: Enhanced power saving mode for low-latency communication
in multi-hop 802.11 networks
Vladimir Vukadinovic, Ioannis Glaropoulos, and Stefan Mangold
Published in the Elsevier Journal of Adhoc Networks, 2014.

Summary: The Future Internet of Things (IoT) will connect billions of battery-
powered radio-enabled devices. Some of them may need to communicate with each
other and with Internet gateways (border routers) over multi-hop links. While
most IoT scenarios assume that for this purpose devices use energy-efficient IEEE
802.15.4 radios, there are use cases where IEEE 802.11 is preferred despite its poten-
tially higher energy consumption. We extend the IEEE 802.11 power saving mode
(PSM), which allows WLAN devices to enter a low-power doze state to save energy,
with a traffic announcement scheme that facilitates multi-hop communication. The
scheme propagates traffic announcements along multi-hop paths to ensure that all
intermediate nodes remain awake to receive and forward the pending data frames
with minimum latency. Our simulation results show that the proposed Multi-Hop
PSM (MH-PSM) improves both end-to-end delay and doze time compared to the
standard PSM; therefore, it may optimize WLAN to meet the networking require-
ments of IoT devices. MH-PSM is practical and software-implementable since it
does not require changes to the parts of the IEEE 802.11 medium access control
that are typically implemented on-chip. We implemented MH-PSM as a part of a
WLAN driver for Contiki OS, which is an operating system for resource-constrained
IoT devices, and we demonstrated its efficiency experimentally.

The protocol design proposed in this paper has been the joint effort of the author
of this thesis and the first author of the paper. The author of this thesis carried
out the protocol simulation development, the implementation, and the simulation
evaluation, while the field experiments were performed in collaboration with the
first author. All authors collaborated in writing the paper.
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Paper F: The Stability of Multiple Objective RPL Tree Formation
Ioannis Glaropoulos, and Viktoria Fodor
Submitted to IFIP Med-Hoc-Net, 2015.

Summary: We address the problem of RPL tree formation in self-organized, multi-
hop, wireless sensor networks, where resource-constrained nodes may independently
select their routing paths that maximize their performance. We study the result
of the tree formation applying a non-cooperative game-theoretic model, and show
that multiple objectives may lead to unstable Nash graphs with unwanted traffic
cycling. To ensure stability we propose an extension of the node’s strategy space,
denoted as selective routing, that efficiently eliminates non-acyclic formations from
the set of Nash equilibria, while the resulting routing decisions comply standard
RPL.

The author of this thesis performed the work presented in this paper under the
supervision of the second author.
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Chapter 6
Conclusions and Future Work

This thesis presents cognitive control and cross-layer optimization techniques in
wireless systems, aiming at addressing two important challenges in wireless net-
working: heterogeneous coexistence and energy efficiency. In this chapter we sum-
marize the main contributions of our work, emphasizing on the most significant
conclusions that we derived.

We studied the efficiency of cooperative sensing in ad hoc cognitive networks,
where the primary and secondary systems bare similar transmission characteristics.
We focused on the particular scenario where the secondary users performing spec-
trum sensing also aim at utilizing the discovered spectrum opportunities, while sat-
isfying, additionally, interference avoidance constraints for primary users. Sensing
efficiency was therefore evaluated with respect to the achievable cognitive capac-
ity for the secondary network. We showed that the cognitive capacity approaches
zero in dense networks, if cooperative sensing is performed on a limited spectrum
bandwidth. We therefore defined and evaluated various sensing allocation schemes,
where the cognitive users sense a limited subset of bands. We developed appro-
priate analytic models for the sensing efficiency under random, coordinated, and
optimal allocation schemes, evaluating the performance gaps due to the different
levels of coodination among the secondary users. We studied the fundamental lim-
its of the cognitive capacity in highly dense cognitive networks and showed that the
achievable capacity converges to a limit that depends on the transmission charac-
teristics of the primary and the secondary users, on the parameters of local sensing,
as well as on the primary interference constraints. Using numerical evaluation we
concluded that while the performance gap between random and coordinated sens-
ing is significant, optimizing the sensing allocation based on the actual number of
secondary nodes leads to little additional gain and does not compensate for the
increased coordination overhead in dense secondary networks.

We addressed the challenge of increasing the energy efficiency in low-power,
802.15.4-based wireless sensor networks, operating under the interference of coex-
isting 802.11 networks, through the introduction of cross-layer control mechanisms,
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that are cognitive of the radio environment, as imposed by the WLAN activity. We
proposed COG-MAC, a new cognitive MAC protocol for wireless sensor networks,
that aims at minimizing the energy loss due to unsuccessful WSN communication
as a result of WLAN interference on the transmitted channel. COG-MAC builds
upon known stochastic models for the WLAN channel activity, uses a smart clear
channel assessment mechanism and performs channel access, with optimal packet
length and transmission distance, to increase the probability of successful packet
transmission. We performed a detailed evaluation of COG-MAC based on an ac-
curate analytic performance model and showed that it significantly outperforms
benchmark solutions, particularly under severe WLAN interference. We stressed
that all the building blocks of COG-MAC are essential for achieving the objective of
energy efficient communication. A detailed simulation study of COG-MAC revealed
that the protocol achieves significant gains even in multihop WSN topologies.

We addressed the challenge of developing an easy-to-use, yet, accurate stochas-
tic model for WLAN channel activity, as an essential component of congitive access
control. We proposed an iterative, simulation-based, discrete stochastic optimiza-
tion algorithm, to efficiently estimate the model parameters from a set of observa-
tions of the channel activity. We showed that the developed algorithm asymptoti-
cally converges to the actual model parameters and evaluated the required number
of samples with respect to the target estimation accuracy. In addition, we addressed
the question, whether the proposed stochastic WLAN channel activity model is a
realistic modeling approach for capturing the channel usage patterns in practical
802.11 networks. In particular, we considered traffic streams, generated by estab-
lished traffic workload models and, additionally, from real WLAN tracesets, and
compared the simulated WLAN activity process with the ones predicted by the
stochastic model. Our results showed that in a wide range of scenarios the pro-
posed WLAN model can sufficiently capture the behavioral patterns of real WLAN
channel activity. We finally identified the aggregate WLAN channel load, and the
particular mixture of application-layer traffic as the dominate factors with signifi-
cant impact on the accuracy of the proposed channel activity model.

Believing that emerging Internet of Things applications will require low-power
communication between IoT radio devices and consumer electronics, typically us-
ing Wi-Fi for network connectivity, we addressed the challenge of optimizing the
802.11 duty-cycling mechanism, so as to achieve a high communication performance
without compromising its enery efficiency. We proposed a multi-hop extension of
the standard IEEE 802.11 power saving mehcanism, that enables low-latency com-
munication in multi-hop ad hoc 802.11 networks. We implemented our solution
on an embedded open-source platform, demonstrating its effectiveness via an ex-
tensive simulation and experimental evaluation. We showed that the enhanced
power saving mechanism increases the sleep ratio of the 802.11 stations, to fur-
ther extend their lifetime under finite power supply. We stressed two important
features of our approach: first, that it is software implementable and, additionally,
backward-compatible with the standardized 802.11 power saving mechanism, which
guarantees interoperability with legacy WLAN devices.
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Finally, we studied the problem of network formation in self-organized, multi-
hop, wireless sensor networks, where the wireless devices independently select their
routing paths towards a gateway node, in order to maximize their individual per-
formance. In particular, we focused on the case where battery-constrained nodes
have multi-objective utility functions, aiming at maximing both the experienced
QoS and their lifetime. Considering RPL as the routing protocol in the wireless
network, we studied the directed acyclic graph, or tree, formation using tools from
non-cooperative game theory, investigating the existence and the quality of mixed-
strategy Nash equilibiria in the formulated tree-formation game. Our main results
showed that under generic node multi-objective utility functions, multi-parent se-
lection strategies lead to unstable Nash directed graphs, that may contain undesired
traffic cycling, strictly prohibited by RPL. We therefore proposed an extension of
the strategy profile space of the game, where parent nodes may adopt different
forwarding polices for their children. We demonstrated that this policy extension
can efficiently eliminate non-acyclic graphs from the set of Nash equilibria of the
tree formation game.

Future research directions
Our work on cognitive transmission control demonstrated the importance of both
the stochastic characterization of the wireless environment, as well as the cross-
layer optimization for the design of efficient solutions that will allow for a smooth
coexistence between heterogeneous technologies in the open spectrum bands. Yet,
it is clear that including, additionally, power and topology control on a system-
wide optimization scheme would lead to further performance gains. The exact
way under which all the aforementioned building blocks would be combined in a
multi-dimensional optimization scheme remains, however, an open issue.

Cognitive transmission control schemes should be agile, thus, include efficient
runtime control mechanisms to adapt to a dynamically changing cross-network
interference. Such mechanisms would require a quick, yet, accurate assessment
of the impact of the protocol operations and of the current interference on the
high-level network performance. Existing runtime protocol adaptation frameworks,
such as [150], could be extended, providing a detailed mapping of the stochastic
characteristics of the cross-network interference on the system performance.

In-line with a plethora of research contributions, this thesis tackles the problem
of energy efficient design in wireless sensor networks of resource constrained devices,
as the key factor for realizing green, large-scale infrastructures for monitoring and
actuation applications. What remains to be assessed thoroughly is the impact of
energy efficient protocol stacks on the performance of upper-level networking, in-
cluding transport and application layer protocols. The lack of deep experimentation
on the inter-operability between energy-efficient design and high-level networking
impedes the introduction of such large-scale infrastuctures. Early approaches, such
as [110], recognize the challenge of the interplay between energy-efficient medium
access control and RPL, and showed, instead, that opportunistic RPL fits well with
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traditional MAC-layer duty-cycling. Future reseach could focus on analyzing the
performance of opportunistic RPL on top of congitive access control schemes, like
COG-MAC, under heterogeneous coexistence.

If energy efficient WLAN infrastructures are to be used in large-scale IoT sys-
tems, an important question is how the increase in the network scale impacts the
interplay between the mechanisms for energy-efficiency and the remaining layers
of the wireless protocol stack. The performance of several protocol operations in
duty-cycling ad hoc 802.11 networks relies heavily on how accurately the network
terminals can synchronize their beacon intervals. Beacon synchronization in large-
scale, multi-hop ad hoc WLANs is, however, highly inefficient. The applicability of
duty-cycling in multi-hop WLANs is, therefore, an important direction for future
investigation. However, network scale raises serious concerns on the performance
of cross-layer operations, which constitute essential building blocks of several pro-
posed energy efficiency optimization schemes, but are still under experimentation,
or have not yet been fully standardized. A large-scale evaluation of such cross-layer
mechanisms is, therefore, crucial for an accurate performance assessment of the
various energy efficient design approaches for ad hoc WLANs.

Finally, in the context of the Internet of Things application scenarios, a funda-
mental research question remains open: Which radio link-layer technology is most
suitable for energy-efficient IoT network infrastructures? Several studies, includ-
ing [151], question whether the combination of IEEE 802.15.4 duty cycle-based
link-layers and RPL-based routing over 6LoWPAN results in a network stack with
highest preformance with respect to energy efficiency, claiming that under certain
application scenarios resource-constrained devices may achieve higher energy sav-
ings while operating with an IEEE 802.11-based network stack. Research could,
therefore, aim at identifying the key parameters of IoT application scenarios with
a decisive impact on the selection of the underlying network stack.
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Abstract

Access to unused spectrum bands of primary networks requires a careful optimiza-
tion of the secondary cooperative spectrum sensing, if the transmission powers in the
two networks are comparable. In this case the reliability ofthe sensing depends sig-
nificantly on the spatial distribution of the cooperating nodes. In this paper we study
the efficiency of cooperative sensing over multiple bands, sensed and shared by a large
number of secondary users. We show that the per user cognitive capacity is maxi-
mized, if both the number of bands sensed by the secondary network as a whole, and
the subsets of these bands sensed by the individual nodes areoptimized. We derive the
fundamental limits under different sensing duty allocation schemes. We show that with
some coordination the per user cognitive capacity can be kept nearly independent from
the network density.

1 Introduction

Cognitive radio networks (CRNs), based on sensing the radioenvironment and adapting the
transmission strategies accordingly, may allow for increased utilisation of radio spectrum
resources. Due to the cognitive capabilities CRNs can efficiently control the interference
among the competing networks [1], or provide secondary access to a spectrum band, en-
suring that the incumbent, primary users do not experience severe performance degrada-
tion [2].

Cognitive networks gain information on the availability ofthe radio spectrum through
spectrum sensing or by accessing somespectrum database, decide about theirspectrum
access strategy based on this information, and performinterference management to control
the interference caused to the other networks in the area. Therefore, the efficiency of the

∗This work was supported in part by the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 216076 FP7 (SENDORA) and by the ICT TNG Strategic Research Area.
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cognitive network depends both on the accuracy of the spectrum availability information
and the efficiency of the channel access and interference management.

In this paper we consider the specific case of secondary access, and focus of the ef-
ficiency of spectrum sensing performed by the nodes of the cognitive network. Spectrum
sensing has the significant advantage that the provided information is timely. Unfortunately,
spectrum sensing performed locally at the SUs can not give accurate information about the
spectrum availability due to the impairments of the wireless channel and the hardware lim-
itations of the sensors [3]. Therefore, to increase sensingperformance,cooperative sensing
is required, where sensing results, exchanged among several sensing nodes, are combined,
in order to reliably detect the presence of primary transmissions. The feasibility of cooper-
ative sensing has been shown for the secondary use of DigitalTV white space, where the
primary transmission is high power and has low time dynamics[4] [5] [6].

In this paper we consider the more challenging scenario, when the both the primary
and secondary transmissions use comparable, low transmissions powers. Spectrum sensing
and secondary access are challenging in this scenario, since the local sensing performance
degrades rapidly as the distance between the primary transmitter and the secondary sensing
node increases, and at the same time a large area around the primary receiver needs to be
protected, to avoid harmful secondary interference.

As the nodes of the secondary network both perform sensing and aim at utilizing the
discovered spectrum bands, we evaluate the effect of the secondary user density on the
per user achievablecognitive capacity. We show that as the network density increases,
the performance of the cooperative sensing of a single band saturates, and the secondary
network needs to optimize both the number of utilized bands and the number of bands
sensed by a single user, to maximize the cognitive capacity.

The contribution of the paper is as follows:

• We provide an analytic framework to evaluate the efficiency of cooperative sensing
in terms of the per user cognitive capacity under interference limitations, when the
primary and secondary transmission characteristics are similar.

• We define and analyze sensing allocation mechanisms, spanning from limited to ex-
tended spectrum sensing and random to optimal sensing duty allocation.

• We study the fundamental limits of the cognitive capacity inhighly dense cognitive
networks and show how it is bounded by the constraints of local sensing perfor-
mance.

• We demonstrate with numerical examples that sensing optimization can achieve sig-
nificant gain in dense networks.

The paper is organized as follows. Related work is presentedin Section 2. In Section
3 we describe the networking scenario, the considered optimization problem and give the
local sensing model. Section 4 presents the analytic model of the capacity optimization
of limited sensing under primary interference constraints. In Section 5 we introduce and
evaluate the different sensing extension schemes. Section6 concludes the paper.
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2 Related Work

The optimization of secondary cognitive access, includingsensing and channel access con-
trol is extensively studied in the literature. Here we consider the specific case of energy
detection based cooperative spectrum sensing over multiple bands. The key issue in the
design of the cooperative sensing solutions is the overheadintroduced by the sensing itself
and by the sensing control.

Considering the control of the cooperative sensing and the fusion of the sensing results,
proposed solutions are based on a common control channel, e.g. [7], or distributed consen-
sus protocols [8] [9], demonstrating that the control overhead is not significant, due to the
localized nature of the decision processes. Similarly, distributed solutions are proposed to
coordinate the access to the cognitive channels [10] [11].

The overhead of sensing depends on several parameters, as the frequency sensing needs
to be performed with, the time needed to sense an individual band, the number of bands
needed to be sensed by a single user, the granularity of the sensing results to be shared, and
the efficiency of the decision combining. The frequency of the spectrum sensing affects
the energy consumption overhead and, together with the timespent for sensing, gives the
ratio of time that is surely lost for the secondary communication. Therefore, [12] [13]
optimize the sensing interval based on the primary channel access statistics. Once the
sensing interval is set, the aim is to optimize the time spentfor the sensing process, which
typically means to find the number of bands to be sensed and theper band sensing time,
such that primary interference constraints are met and the secondary sensing performance
or the secondary throughput is maximized [14] [15].

Sensing decision combining under cooperative sensing falls in one of two categories,
hard decision combining or soft decision combining. Under hard decision combining the
local decisions about the band availability are combined, with AND, OR or some k-out-
of-N fusion rule, while under soft decision combining the quantized energy measurements
are shared for the cooperative decision. Hard decision combining is often considered for
its limited transmission overhead. As [14] and [16] show, the OR rule is typically more
efficient than the AND one, while optimized decision combining outperforms these two,
especially if even the local decision thresholds are carefully tuned. However, consider-
ing the effect of the average primary SNR and the number of nodes participating in the
cooperative decision, all these schemes have similar behavior. Hard and soft decision com-
bining are compared in [17], which concludes that under transmission errors the gain of
soft decision combining is limited.

The allocation of sensing duties to a limited set of sensors is addressed in [18], consid-
ering a priori knowledge of the band occupancy probability and of the average SNR. The
set of sensing nodes is optimized based on the experienced signal propagation environment
in [19]; the proposed solution is further improved in [20], where learning is applied to select
the sensing nodes taking even the sensing delay and the control traffic into account. [21]
optimizes the number of users sensing a single band in a multichannel environment, recog-
nizing that with increased fading more and more nodes need tosense the same band, which
decreases the number of bands accessible for the secondary network.
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Figure 1: Secondary Cognitive Radio Network, coexisting with the Primary Network in the
same area.

Most of the studies on sensing and interference management,however, consider pri-
mary users with large transmission power, resulting in equal average SNRs at the cognitive
sensing nodes. Few works are available for the scenario considered in this paper, where
the cooperating SUs see significantly different average SNRlevels. In [22] the authors
propose a framework for cooperative sensing where local sensing is distance-dependent.
Taking into account the spatial distribution of the cognitive users, the authors model the
accumulative interference to a PU, without, however, considering a capacity maximization
problem. In [23] a specific case of this scenario is considered, where the primary trans-
mission range is significantly lower than the secondary one.Sensing and channel access is
considered jointly in [24], however only for the scenario where the local sensing parame-
ters are not distance dependent and the subsets of channels sensed by the given secondary
users are not optimized.

3 System Description

3.1 Sensing and interference management

We consider a primary and a cognitive secondary network in the same geographical area, as
shown in Figure 1. The primary and the secondary transmitters have similar characteristics,
thus similar transmission range. Secondary users (SUs) arerandomly dispersed in the area,
with densityρ . SUs perform spectrum sensing over a set of frequency bands with the help
of their embedded sensing equipment. SUs exchange information to perform cooperative
sensing, derive their relative locations [25] [26], control the individual sensing processes,
and coordinate the access to the cognitive bands [7]– [11].

We consider four different cases ofsensing duty allocation: Under limited spectrum
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sensing each of the SUs senses the same setM of narrow frequency bands,|M|= M. We
refer toM as the local sensing budget.M is limited by the nodes’ hardware constrains, that
is, M < Mmax. The goal of the sensing duty allocation optimization is to find the optimal
M value and cooperative sensing parameters for a given SU density.

Underextended spectrum sensing the SUs together aim at sensing a set ofW bands, of
size |W| = W , defined as thenominal sensing budget. Each secondary useri may sense
a different subset of bands,Mi ⊂W . As nodes have similar sensing capabilities, we still
consider local sensing budgets|Mi| = M < Mmax, ∀i. If the users sense the same subset,
Mi =M =W , the scenario reduces to the limited spectrum sensing. We consider three
different policies for sensing duty allocation under extended spectrum sensing:

1. Random sensing: each of the secondary users selects the subsetMi of frequency
bands, by picking each band ofW with the same probability.W , M and the cooper-
ative sensing parameters are optimized for the given SU density.

2. Coordinated sensing: the secondary users coordinate the sensing duty allocation,
such that each band ofW is sensed by approximately the same number of users.
Again, optimization is performed for the average user density.

3. Optimal sensing: the secondary network is aware of the instantaneous numberof
SUs in the area and performsdynamic sensing budget adjustment accordingly. Then,
it performs coordinated sensing, considering the actual sensing budget given by the
optimizedW andM.

SUs operate in a time-slotted, slot-synchronized manner. They conduct spectrum mea-
surements and share spectrum availability information at the beginning of a time-slot, and
transmit in the second part of the time-slot, if free bands have been detected. We con-
sider hard decision combining with local energy detection,where each sensor shares only
its binary only noise or signal present decision, and OR decision rule, that is, a band is
considered as occupied if at least one sensor decides for signal present.

Figure 2 illustrates the main principles of the considered sensing and interference man-
agement framework. An arbitrary primary transmitter is surrounded by aprohibited area,
inside which simultaneous secondary transmissions withinthe same frequency band would
cause interference. The radius of the prohibited area,RI , is determined by the transmission
characteristics of primary and secondary users, associated with the transmission rangesRp

andRs respectively. Considering the worst case scenario, when the primary receiver of
the particular transmitter lies in the border of the primarytransmission range,RI becomes
RI = Rp +Rs, as shown in the Figure. In the rest of the analysis we will assume that trans-
mission ranges are fixed and so the radiusRI is fixed and known to the secondary users.

To detect a transmitting PU at a given location, a subset of the SUs inside the related
prohibited area performs cooperative sensing. Since the reliability of the local sensing de-
creases with the distance to the transmitter, we define thesensing area as a disk centered
at the considered PU location. The size of the sensing area, that is, the extent of the co-
operative sensing, is controlled by the cooperation radiusRc ≤ RI . As shown in Figure 2
spectrum sensing for the considered PU location is conducted by NA SUs inside the area
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Figure 2: Interference modelling scheme: radiusRI defines the disk that corresponds to the
prohibited area of a PU, which is determined by the communication ranges of the primary
and secondary users.

A. AreaB is the area where existing SUs do not sense for the primary user but can cause
harmful interference. The unionA∪B constitutes the prohibited area for the considered
primary user location, withNA+NB SUs.

As for the cognitive transmission, we consider an idealizedchannel access scheme in
the secondary network, where, after each sensing period, theavailable bands, i.e. the ones,
for which cooperative sensing resulted in a correct detection of a free band or a missed
detection of an occupied one, are assigned fairly to the SUs within A∪B, with at most one
band for an SU at a time.

3.2 Sensing optimization

Our aim is to maximize the per user cognitive network capacity, that is, the amount of
spectrum resources available for each of the secondary users. The secondary users need
to satisfy their bandwidth requirements through their own cooperative spectrum sensing.
Their ability to extend sensing reliably to a large portion of radio spectrum enhances, as
their population in a certain area increases, but at the sametime, the available resources
need to be shared among a higher number of SUs.

To capture this trade-off we define the per usereffective cognitive capacity, C, as the
ratio of the spectrum resources that are available for cognitive communication and the sum
of resources requested by the secondary users, assuming that even a mis-detected band is
useful resource for the cognitive communication. We limitC ≤ 1, as an SU can transmit on
one band only.

The secondary channel access is limited by theprobability of interference at the primary
user from the secondary network. To reflect the fact that channels detected free may remain
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unutilized if all SUs are satisfied, we define the probabilityof interference by the joint
probability that the primary transmission is not detected and the band is assigned to a
secondary user in the interference area.

We aim at optimizing the sensing duty allocation such thatC, the expected per useref-

fective cognitive capacity under given SU densityρ is maximized, while respectingP(max)
I ,

the primary system interference constraint. Formally:

maximizeC

subject toP(I)≤ P(max)
I

M ≤ Mmax,

(1)

In addition, under optimal extended sensing theNA andNB values are known, and the
optimization can be reformulated as:

maximize C(NA,NB)

subject to P(I|NA,NB)≤ P(max)
I ,

0< M ≤ Mmax,

(2)

andC is the average of the achievedC(NA,NB) over the distributions ofNA,NB.
There are numerous input parameters of this optimization problem and numerous sys-

tem variables to be optimized. Specifically, as input parameter, we considerRI , the radius

of the prohibited area;P(max)
I , the primary interference constraint; the sensing parameters as

Mmax, the maximum number of sensed bands, andTs, the total sensing time; and finally,ρ ,
the secondary network density. The optimized system variables areγ, the threshold value
of the local sensing;Rc, the radius of the sensing area;W , the number of sensed bands; and
M, the number of bands sensed by a single SU.

Note, that we do not consider the optimization of the sensingtime Ts, the length of the
cognitive time slot, the fusion rule, and the overhead of cooperation, to keep the problem
tractable. As discussed in Section 2, related results can befound e.g., in [12]– [17].

3.3 Local sensing framework

During the sensing period an arbitrary secondary user measures the energy that is received
within each of the frequency bands in its local sensing budget. Then it makes a binary deci-
sion, regarding the existence of an active primary transmission, by comparing the measured
signal energy with a predefined energy decision threshold. We define the two complemen-
tary hypotheses as follows:

{
H0 : x[k] = υ [k] only noise

H1 : x[k] = h · s[k]+υ [k] signal present,
(3)

wherex is the received primary signal,h is the channel coefficient of the link between
the SU and the hypothetical primary transmitter ands is the transmitted signal, which is
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assumed to be constant for the sake of simplicity. The local test variabley is formed by
squaring and integratingK samples of the received signal during the per band sensing time,
ts:

y =
1
K

K

∑
k=1

|x[k]|2
H1

R
H0

γ i, (4)

whereγ is the selected decision threshold. For Rayleigh flat-fading channel with lognormal
shadowing, the channel coefficient obtains the following form:

h =
1

(r/r0)
η/2

e jφ α 10ζ/20. (5)

In the above expressionr is the distance between the hypothetic primary transmitterlo-
cation and the sensing device,r0 is a close-in reference,η is the path-loss exponent,α,
ζ are a unit - variance Rayleigh and a zero-mean Gaussian random variable respectively
representing small scale fading and shadowing andφ is a random phase shift uniformly
distributed in[− π

2 ,
π
2 ]. Based on (4) and (5) the probability density function of thetest

variabley under the two hypotheses is given in the following formulas:

py (y;H0) =
1

(σ/K)2KΓ(K)
yK−1ey/(σ/K)2,

py (y;H1/α,ζ ) = 1
(σ/K)2

(
y

q2

) (K−1)
2

e
− (

q2+y)
(σ/K)2 IK−1

(√
y 2q
(σ/K)2

)
,

whereq2 , PW K 10ζ/10α2

(r/r0)
η . PW is the transmitted signal power in the considered band, i.e.

PW = |s|2, σ2 is the noise power andIK (·) is theK-th order Bessel modified function of the
first kind.

Local missed detection and false alarm probabilities with respect to the energy threshold
γ are given as in [24] – by averaging over the random variablesα andζ :

pmd(r,γ) =
γ∫

0

∞∫

0

∞∫

−∞

py (y;H1/α,ζ ) pζ pαdζdαdy, (6)

p f a(r,γ) =
+∞∫

γ

py (y;H0)dy. (7)

Since the number of signal samples integrated at the energy detector can be consider large
enough, we approximate the above density functions with Gaussian, obtaining the follow-
ing simplified expressions:
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p̂md(r,γ) = Pr(no detection|H1) =

= 1−Eα2[Eζ [Q( γ−σ2−α210ζ/10PW (r/r0)
−η√

2σ4/K
)]],

(8)

p̂ f a(r,γ) = Pr(false detection|H0) = Q( γ−σ2√
2σ4/K

), ∀i. (9)

As the received signal level depends significantly onr, we define the detection threshold
γ as the linear combination of the received noise and theexpected signal power at the SU,
given distancer to the hypothetic transmitter:γ : R+ → (σ2,∞), that is:

γ = γ(r) = γ0 ·σ2+ γ1 ·PW r−η , (10)

Consequently, secondary users relatively close to the considered primary transmitter
location apply higher decision thresholds and decrease their local false alarm probability.

To calculate the expected local false alarm and missed detection probabilities, consider
the situation in Figure 2. Sensing collaboration is extended to a circular sensing area around
the tested PU location, determined by the radiusRc. Since SUs are uniformly and indepen-
dently distributed, the expected local missed detection probability of any SU within the
sensing area is given by:

pmd(Rc,γ) =
∫ Rc

0 p̂md(r,γ)p(r|Rc)dr =
∫ Rc

0
2

R2
c
rp̂md(r,γ)dr, (11)

wherep(r|Rc) denotes the probability that a secondary user lies inside the infinitely thin
ring at distancer from the PU (indexi is omitted for the sake of simplicity):

p(r|Rc) = Pr{user lies in the ring at distancer}= 2rdr
R2

c
.

Similarly, secondary users cooperating within a sensing area with radiusRc where no
primary transmitters are active generate false alarm with expected local false alarm proba-
bility:

p f a(Rc,γ) =
∫ Rc

0 p̂ f a(r,γ)p(r|Rc)dr =
∫ Rc

0
2

R2
c
rp̂ f a(r,γ)dr. (12)

4 Maximizing the Cognitive Capacity under Limited Sens-
ing

First we evaluate the efficiency of limited sensing, that is,when all SUs in the sensing area
of a PU location sense the same set of narrow frequency bands.For the analysis we assume
that there is only one active PU, and derive how large part of the remaining free capacity
can be used by the SUs in the interference area, such that the interference limit towards the
PU is respected.
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4.1 Analytic model for interference and cognitive capacity with pri-
mary user operating in a single band

Consider that the primary user in Figure 2 transmits in bandV ∈ M, while all the other
bands ofM are not utilized by the primary network. The PU encounters interference,I,
on bandV , if both i) spectrum sensing on bandV results in a missed detection, andii)
during the following time interval this band is assigned – based on the access scheme – to
a secondary user that lies inside its prohibited area.

SUs in areaA use the total sensing timeTs to sense sequentiallyM ≤ Mmax bands. The
available sensing time for any band is thusts = Ts/M.

To model the random location of secondary users, we considerthe SUs’ population in
areasA andB be independent Poisson variables with the same expected density, ρ .

Following the definition in Section 3.2, we expressP(I|NA,NB), the probability of
interference to the primary user, conditioned on the numberof the existing secondary users
in areasA andB, as:

P(I|NA,NB) = Pr{miss. det.|NA} ·Pr{use|NA,NB}. (13)

In the following we derive the expressions for both factors in (13). Based on theOR deci-
sion rule, we obtain the missed detection probability of thecooperative sensing:

Pr{miss. det.|NA}, pMD(NA) =

= ∏NA
i=1Pr{miss. det. nodei}= (pmd(Rc,γ))NA .

(14)

Notice that (14) assumes uncorrelated local measurements.The assumption has been jus-
tified in [27]. Furthermore, the probability that the bandV will be assigned for cognitive
operation to a secondary user in the prohibited area is givenby:

Pr{use|NA,NB}=
M−1

∑
j=0

min{1,
NA+NB

j+1
} ·Pf r( j), (15)

wherePf r( j) defines the probability thatj out of the unusedM − 1 bands are available
for cognitive operation after sensing. A band may not be available for cognitive use if
spectrum sensing in this band resulted in a false alarm. Since the false alarm probability is
independent for each sensed band,

Pf r( j), Pr{ j bands detected free}
=
(M−1

j

)
(pFA(NA))M−1− j(1− pFA(NA)) j,

(16)

wherepFA(NA) is the false alarm probability of cooperative sensing:

pFA(NA), Pr{false alarm in a single band|NA}
= 1− (1−p f a(Rc,γ))NA .

(17)
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Notice in (14) and (17) thatpmd(Rc,γ) andp f a(Rc,γ) – given in (11) and (12) respectively
– also depend on the available sensing time for each band, which is inversely proportional
to the number of sensed bands,M. Finally, the expected interference at the primary user
from the secondary network is given by the following expression:

P(I) = ∑∞
NA=0 ∑∞

NB=0 P(I|NA,NB) ·pNApNB =

= ∑∞
NA=0 ∑∞

NB=0[P(I|NA,NB) · (|A|ρ)NA
NA! e−(|A|ρ) (|B|ρ)NA

NB ! e−(|B|ρ)],
(18)

whereP(I|NA,NB) is given by (13) based on the derivations in (14), (15) and (16) and
pNA andpNB define the probabilities of havingNA andNB in areasA andB respectively.
These probabilities depend on the sizes of the areas, denoted as|A| and|B|, corresponding
to radii Rc andRI respectively. Note, that they do not depend on the components of RI ,
that is,RP andRS.

Theeffective cognitive capacity, as defined in Section 3.2, is a function of the number
of SUs in areasA andB, and depends on the number of bands detected free inM\V , and
on the probability that the primary transmission on bandV is not detected:

C(NA,NB), ∑M−1
j=0 [min{1, j

NA+NB
}(1− pMD(NA))+

+min{1, j+1
NA+NB

}pMD(NA)] ·Pf r( j).
(19)

The expected effective cognitive capacity depends on the SUdistribution, that is:

C =
∞

∑
NA=0

∞

∑
NB=0

C(NA,NB) ·pNApNB . (20)

Although it is not shown in (19), (20),C is a function of the decision thresholdγ and
the cooperation radiusRc, so it is related to all of the system design parameters that we
wish to optimize.

Given (18) and (19), the solution of the optimization problem (1) is not straightforward,
since the objective and constraint functions are not convex, and therefore extensive search
over the system variablesγ, Rc andM, is required. The search process is impeded by the
fact that the feasible set of (1) is generally not compact, sinceP(I) is not even monotonic
with respect to the system variables. It is though possible to reduce the searching borders
of Rc, within which extensive search is, however, still necessary.

First we solve a modified version of (1), with the interference constraint function,P(I),
reduced to the missed detection probability,

P̃(I) =
∞

∑
NA=0

pMD(NA) = e−(1−pmd(Rc,γ))|A|ρ . (21)

Now P̃(I) is increasing withγ andM, while it is decreasing withRc. Since the cognitive
capacity,C is decreasing withRc as well, the optimal radius,̃R∗

c, for the modified problem
is given by:

R̃∗
c(M,γ) = P̃(I)−1(P(max)

I ), ∀M,γ , (22)
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where the inverse function is defined with respect toRc. SinceRc ≤ RI , γ is restricted by
the set of maximal valuesγ (max), which are the solutions of:

γ (max)= P(I)−1(P(max)
I ,RI),

where the inverse function is taken with respect toγ.
SincePr{use|NA,NB} ≤ 1 and for low values ofNA,NB it holdsPr{use|NA,NB} < 1 we
have:

P(I) |Rc=R̃∗
c(M,γ)< P(max)

I .

A a result, the optimal radius,R∗
c(M,γ) for anyM, γ in (1) is lower thanR̃∗

c(M,γ).
Similarly, a lower bound forR∗

c(M,γ) can be derived by considering a lower bound for
Pr{use}, assuming zero false alarm probability:

P̂r{use}= min{1,
NA +NB

M
}.

This leads to:

P̂(I) = ∑
NA

∑
NB

pMD(NA)min{1,
NA +NB

M
}pNApNB (23)

and
R̂∗

c(M,γ) = P̂(I)−1(P(max)
I ), ∀M,γ . (24)

Finally, the optimalR∗
c(M,γ) is the minimum solution ofP(I) |M,γ= P(max)

I found by
extensive search in a discretized version of the interval(R̂∗

c , R̃
∗
c).

SincePr{NA+NB ≤ M} decreases withρ , P̂(I) approaches̃P(I), asρ increases. As
a result,R̂∗

c approaches̃R∗
c, which significantly reduces the size of the search intervalfor

the original problem in (1) for the considered dense networks.

4.2 Cognitive capacity and interference modelling with primary users
operating in multiple bands

Let us now consider the scenario when the PU in Figure 2 utilizes a set of frequency bands.
We allow this set to be random in each time slot, assuming a simple ON-OFF model for
primary user activity, parameterized by the per band PU load, w:

Pr{bandVi is occupied}= w ∈ (0,1), ∀Vi ∈M. (25)

Following the derivation ofP(I) in Section 4.1, only (16) has to be reformulated, since
it givesPf r( j), the probability thatj bands are detected free, which now additionally de-
pends on the number of bands occupied by the PU.

According to the activity model of (25),v(k), the probability thatk bands are occupied
in addition to bandV is:

v(k) =

(
M−1

k

)
wk(1−w)M−1−k, 0≤ k ≤ M−1, (26)
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and the probability thatj bands are detected free is given as:

Pf r( j) =
M−1

∑
k=0

Pf r( j|k)v(k). (27)

Let us denote byn the number of frequency bands that have been detected free, while
occupied by the PU, that is detection has failed, and bym the number of bands that have
been successfully detected free by the SUs. The random variable j = n+m gives the total
number of the available bands. As the bands experience independent load, we get:

Pf r( j|k) = Pr{ j bands detected free |k are used}=
= fn|k ∗ fm|k, 0≤ n ≤ M−1,n+m= j,

where∗ denotes convolution, andf (n|k) and f (m|k) represent the distributions of variables
n andm respectively (n ≤ k, m ≤ M−1− k):

fn|k =
(k

n

)
(pMD(NA))n(1− pMD(NA))k−n and

fm|k =
(M−k−1

m

)
(pFA(NA))M−k−1−m(1− pFA(NA))m,

with pMD(NA) andpFA(NA) given in (14) and in (17).
The effective cognitive capacityC is then given by (19), withPf r( j) defined in (27).

4.3 Performance evaluation

Table 1: Parameter Setting for WLAN Case Study
Parameter Value

Primary Signal Bandwidth 22MHz (1 WLAN Band)
Primary Signal Power 15dBm

Path Loss (η) 4.5
Shadowing (µ , σ2) 0dBm, 10dB
AWGN Power (σ2) -96dBm

Interference Limit (P(max)
I ) 10−3

Total Sensing Time (Ts) 2.5msec
Sensed Band Size (BW ) 200kHz

Max. Number of Sensed Bands (Mmax) 100
Signal Power in Sensed Band (PW ) -5dBm

Prohibited Area Radius (RI) 300m

Let us now evaluate the efficiency of limited sensing, that is, the achievable effective
cognitive capacity, as a function of the network density. The capacity is derived through
the numerical solution of the optimization problem in (1).
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Figure 3: Effective cognitive capacity with
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quency bands,M, for various cognitive net-

work densities. Interference limit:P(max)
I =

10−3. Optimal values are marked.
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Figure 4: Effective cognitive capacity with
respect to average secondary network den-
sity and for various interference limits.

4.3.1 Parameter setting

As an example, we consider local primary and secondary networks, with transmission pa-
rameters comparable to IEEE 802.11x WLANs. Table 1 lists theinput parameters for our
numerical analysis, unless otherwise stated.

The particular value forRI , which defines the size of the prohibited area, is selected
based on practical transmission ranges in wireless local area networks.Mmax is chosen
equal to 100 bands. Each of those narrow bands has a bandwidthof BW = 200kHz, as
proposed in [28].

4.3.2 Numerical analysis

First we consider the case when the PU only occupies a single band and evaluate howM
– the number of bands sensed – affects the effective cognitive capacity. That is,M is now
input parameter of (1). Figure 3 shows, thatM is indeed a parameter to be optimized, since
depending on the SU densityρ there can be a local optimumM < Mmax. An expansion of
M behind this value increases the probability of false alarms, which leads to decreased per
user cognitive capacity. After a local minimum, the capacity is expected to increase again,
since in the unrealistic case ofM → ∞, the probability of interference tends to zero even
without sensing, and consequently, the cognitive capacitytends to 1.

The effective cognitive capacity, as a function of the secondary network density and
for different interference limits is depicted in Figure 4. The capacity is determined via
the numerical solution of (1). Under a given interference constraint, the cognitive network
capacity reaches a highest value as network density increases, due to improved sensing
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Figure 6: Effective cognitive capacity as a
function of primary user activity load,w,
for various interference constraint values.
User density:ρ=500 Users/Km2

efficiency. Above this "optimal" network density the capacity falls, as the now marginal
improvement of sensing efficiency is not sufficient to accommodate the increasing need
for bandwidth. For high user densities the cognitive capacity does not depend much on the
interference limit, as a result of the high spectrum sensingperformance. We observe a local
minimum of cognitive capacity at low network densities. Fordensities below this value the
sensing performance is weak, but as only few SUs are in the protected area, only few bands
are accessed, and thus the probability of interference remains low.

Figure 5 shows the cognitive network capacity when the primary user operates in multi-
ple bands. While the capacity decreases with the PU load, thethe optimal network density,
that is, where the capacity is maximized, does not seem to be affected. At the same time
Figure 6 shows that the cognitive capacity decreases nearlylinearly with the PU load, for

the considered strict interference limitsP(max)
I .

Due to this independence, and for the sake of simplicity, we consider primary users
operating in a single band in the rest of the paper. The extension for variable PU load is
straightforward.

Our evaluation proves that the set of frequencies that can besensed reliably by the SUs
limits the achievable effective capacity in dense secondary networks. To overcome this
limitation, the set of frequency bands available for cognitive transmission have to be ex-
tended, without the decrease of the per band sensing time of the SUs. This can be achieved
by extended sensing, that is, by allowing the SUs to sense different subsets of the primary
bands.
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5 Extended Spectrum Sensing
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Figure 7: The distribution of sensing duties in a dense cognitive network.

Let us now evaluate the performance of extended sensing. As defined in Section 3.1,
the SUs together sense a set ofW primary bands, of size|W| = W , giving the nominal
sensing budget. This nominal sensing budget can be larger than the local sensing budget of
the nodes,Mi ⊂W and|Mi|= M ≤ Mmax<W . This situation is depicted in Figure 7. If
all the users sense the same subsetM, the scenario is reduced to the one of Section 4 and
Mi =W , ∀i.

5.1 Analytic model for extended spectrum sensing with different sens-
ing policies

5.1.1 Random sensing

In this case the secondary users randomly select the subsetMi of frequency bands to
sense, independently from each other. An SU selects each of the spectrum bands with
equal probability, that is, the probability that a band is sensed by an arbitrary SUi is:

pW,i =
M
W

= pW , ∀i = 1, ...,NA.

Consider the bandV ∈W used by the primary system. With probabilitypW an arbitrary
SU belongs to theNV

A SUs that sense bandV and additionalM − 1 out of the remaining
W −1 spectrum bands, while with probability(1− pW ) it belongs to the restNA−NV

A SUs
which senseM out of theW −1 bands.
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Let us introducep( j,k|NA), the probability that whenNA SUs perform sensing,k of
them sense bandV and j bands inW\V are available for transmission, that is, are correctly
detected as free.

With p( j,k|NA) we can expressP(I|NA,NB), the probability of interference on band
V , similarly to (13) – (15), as:

P(I|NA,NB) =

= ∑W−1
j=0 ∑NA

k=0 Pr{miss. det.|k} ·Pr{use|NA,NB, j}p( j,k|NA) =

= ∑W−1
j=0 ∑NA

k=0 pMD(k)min{1, NA+NB
j+1 }p( j,k|NA).

(28)

Similarly, the variablep( j,k|NA) helps us to express the cognitive capacity. We calcu-
lateC(NA,NB) according to (19), with some changes. First, the missed detection prob-
ability pMD(NA) depends now on the number of SUs sensing channelV , pMD(NA) =

∑NA
k=0 pMD(k)p(k), wherek is the number of SUs sensing a band, which follows a binomial

distribution with parametersNA andpW . Similarly, we replacePf r( j) with ∑NA
k=0 p( j,k|NA).

The direct calculation ofp( j,k|NA) suffers from combinatorial complexity due to the
random band selection at the SUs. Therefore, we propose a recursive algorithm to calculate
these probabilities, where we integrate the individual sensing results of each of theNA SUs
sequentially, exploiting that they are independent and stochastically identical.

We define the two-dimensional stochastic process, where state S(s)j,k defines the event
that j spectrum bands are available andk users choose to sense bandV , after the results of

the firsts SUs are integrated. S(s)j,k denotes the probability of stateS(s)j,k, with ∑W
n=0 S(s)n,k = 1.

The vectorS(s)k ∈ RW denotes the stochastic vector of the available spectrum bands, given
k, after incorporating the sensing processes of the firsts SUs.

In each iteration, the process can move the from a stateS(s)j,k to statesS(s+1)
j−n,k andS(s+1)

j−n,k+1,
based on whether thes+1-th user senses bandV and given the false alarm events that it
may generate. The value ofn, which indicates the additional number of bands that are
"infected" by a false alarm event after incorporating the sensing from thes+ 1-th SU, is
bounded by:

max{0, l− (W −1− j)} ≤ n ≤ min{l, j}, (29)

with l denoting the number of the generated false alarm events by user s+1. Given that
the false alarm probability is the same for any spectrum band, and considering that SUs
select to sense any spectrum band with the same probability,we can express the conditional
probability ofn new bands getting infected by false alarm as:

π j→ j−n|l =
(

l
n

)n−1

∏
u=0

j− u
W −1− u

·
l−n−1

∏
u=0

(1− j− n
W −1− n− u

),

which indicates thatn out of l false alarms infect new bands, while the rest infect already
infected bands. Clearly, for values ofn outside the bounds given in (29) the conditional
transition probabilities are zero. The unconditioned transition probabilities are computed
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by averaging based on the probability mass function of the number of the false alarm events
l, p(l|L) =

(L
l

)
pl

f a(1−p f a)
L−l , whereL = M if SU s+1 does not sense bandV andL =

M−1 otherwise:

π j,k→ j−n,k =
M

∑
l=0

π j→ j−n|l · p(l|M)pW ,

π j,k−1→ j−n,k =
M−1

∑
l=0

π j→ j−n|l · p(l|M−1)(1− pW).

The initial state vector of the recursion is:S(0)0 = (0,0, ....,1). The state vector in step
s+1 is calculated as:

S(s+1)
j,k = ∑W−1

i=0 π i,k→ j,k ·S(s)i,k +∑W−1
i=0 π i,k−1→ j,k ·S(s)i,k−1, (30)

or in matrix form:
S(s+1)

k = S(s)k

T
·Π+ S(s)k−1

T
·ΠV , (31)

whereΠ,ΠV ∈ RW×W are thetransition matrices:

Π = [π i,k→ j,k], ΠV = [π i,k−1→ j,k],

∀i, j = 0,1, ...,W −1 and∀k = 0,1, ...,NA.

With the above recursive process we calculateS(NA)
j,k , and setp( j,k|NA) = S(NA)

j,k .
Considering the recursive method described above, the computation complexity of cal-

culatingp( j,k|NA) is of the order ofO(NA ·M ·W). Moreover, due to the recursive nature
of the method, we can calculate the state distribution forNA = i+1 SUs based on the al-
ready computed state distribution fori SUs with a complexity ofO(M ·W ). As a result, the
iterative algorithm makes it possible to calculate the capacity and interference values with
polynomial complexity.

5.1.2 Coordinated sensing

Under coordinated sensing theNA SUs in the sensing area cooperate to select the indi-
vidual local sensing budgetsMi, i = 1, ...,NA, such that each spectrum band is sensed by
approximately the same number of secondary users,NAd ≈ NA/(W/M) = NAM/W . The
approximation is accurate forNA ≫W/M, which is expected in dense networks.

To calculate the probability of interference,P(I), we can follow (13) – (18), but consid-
ering cooperative sensing byNAd SUs for each spectrum band. Consequently, the missed
detection probability becomes:

pMD(NAd) = (pmd(Rc,γ))NAd ,

while the band utilization probability is:

Pr{use|(NA,NB)}=
W−1

∑
j=0

min{1,
NA+NB

j+1
}Pf r( j), (32)
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with

Pf r( j) =
(W−1

j

)
(pFA(NAd))

W−1− j(1− pFA(NAd))
j . (33)

The effective cognitive capacity is again calculated according to (19), usingpMD(NAd)
andPf r( j) from the equations above.

5.1.3 Optimal sensing with dynamic sensing budget adjustment

Now the secondary network maintains information on the actual number of SUs in the area
at each point in time, optimizes the system variablesW , M, Rc andγ according to (2), and
then allocates sensing duties as in the case of coordinated sensing. The effective cognitive
capacity in this case is expected to outperform the ones of random and coordinated sens-
ing at the cost of a higher control traffic overhead.P(I|NA,NB) andC(NA,NB) can be
calculated as for coordinated sensing.

5.2 Capacity limits in highly dense cognitive networks

Let us now investigate the asymptotic behavior of the effective cognitive capacity at very
high SU densities. We detail the evaluation of the optimal sensing extension scheme, and
summarize the results for the random and coordinated schemes.

In highly dense networks we can approximate the capacity, defined in (19), with respect
to the total number of SUs in the prohibited area,N = NA+NB. Let us introducePf r( j|N)
andPf r( j|NA) as the probability ofj channels detected free givenN SUs in the prohib-
ited area, and givenNA SUs in the sensing area, respectively. GivenN, NA has binomial
distribution, withqN(NA) =

( N
NA

)
[( Rc

RI
)2]NA [1− ( Rc

RI
)2]N−NA .

Considering that for largeN pMD(NA) ≈ 0 and approximating min{1, j
N } with j

N , we
get:

C(N)≈ ∑W−1
j=0 min{1, j

N }Pf r( j|N)

≈ ∑W−1
j=0 j/N ·Pf r( j|N)

= ∑N
NA=0 ∑W−1

j=0 j/N ·Pf r( j|NA)qN(NA)

= Ĉ(N).

(34)

In the optimal sensing extension caseNAd = NAM/W SUs sense each of the bands,
and thusĈ(N) can be further approximated as:

Ĉo(N) =

= W−1
N ∑N

NA=0(1−p f a)
NAd qN(NA)

≈ W−1
N exp{[(1−p f a)

M/W −1]N( Rc
RI

)2}
≈ W

N exp{[(1−p f a)
M/W −1]N( Rc

RI
)2}.

(35)
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In dense networks, the probability that a band, that is detected free, is indeed allocated
to an SU is close to one, that is,Pr{use|N} ≈ 1. Based on this, we can approximate the
probability of interference, defined in (13) – (15), as:

Po(I|N) ≈ ∑N
NA=0 pNA·M/W

md qN(NA)≈
≈ exp{[pM/W

md −1]N( Rc
RI

)2}= P̂o(I|N).
(36)

For P̂o(I|N) = P(max)
I we can then expressW as:

W = M ln(pmd)/ ln

(
1+

ln(P(max)
I )

N(Rc/RI)2

)
, (37)

which already shows that in highly dense networks the size ofthe nominal sensing budget
W has to be increased withN, to achieve optimal performance.

Replacing (37) in (35) we get the cognitive capacity with respect to the local sensing
parameters,M, Rc andγ:

Ĉo(N) = M ln(pmd)

N ln(1+
ln(P

(max)
I )

N( Rc
RI

)2
)

·

·exp

{
[(1− p f a)

ln(1+ln(P(max)
I )/N( Rc

RI )2)/ ln(pmd)−1]N( Rc
RI

)2

}
.

(38)

Proposition 1: In highly dense networks and with optimal sensing extension, the effec-
tive cognitive capacity asymptotically tends to the following limit:

lim
N→∞

Ĉo(N) = M
R2

c/R2
I lnpmd

lnP(max)
I

(P(max)
I )

ln(1−p f a)
lnpmd . (39)

Proof : The limit can be derived analytically from (38).
�
Proposition 2: The limit of the effective cognitive capacity given in (39) is an increasing

function ofM.
Proof: The gradient of (39), with respect toM is always positive.
�
According to Proposition 2, the optimumM is Mmax, andW is given by (37). Therefore,

the optimization problem to maximize the limit of the cognitive capacity under optimal
sensing extension becomes two dimensional:

Co = max
Rc,γ

{Mmax
R2

c/R2
I lnpmd

lnP(max)
I

P(max)
I

ln(1−p f a)
lnpmd }. (40)
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Furthermore, as this is now an unconstrained optimization problem, maximization can be
performed sequentially for the variables of the system, thus reducing the complexity sig-
nificantly:

Co = Mmax/[R2
I lnP(max)

I ] ·maxRc

{
maxγ{R2

c lnpmdP(max)
I

ln(1−p f a)
lnpmd }

}
. (41)

Corollary: The asymptotic cognitive capacity limit of optimal extended spectrum sens-
ing depends on the input parameters such as the interferenceprobability constraint and the
size of the prohibited area, and on the performance of the local sensing, which in turn de-
pends on the primary transmission power and the sensing time, but even on the optimal
sensing area.

The process of deriving the approximate capacity and interference, and finally the ca-
pacity limits of random and coordinated sensing extension is similar. Specifically, for the
coordinated scheme:

Ĉc(N)≈ W −1

αc(M)πρR2
I

e−πρR2
I [eαc(M)πρR2

I −1], (42)

whereαc(M) = e
[(1−p f a)

M/|W|−1]( Rc
RI )2

, and

P̂c(I|N) = exp{−πρR2
I(1− eβc(M))}, (43)

whereβc(M) = [pM/W
md −1] · ( Rc

RI
)2.

For the random sensing scheme:

Ĉr(N)≈ W −1

αr(M)πρR2
I

e−πρR2
I [eαd(M)πρR2

I −1], (44)

whereαr(M) = exp{[e−p f aM/W −1]( Rc
RI

)2}, and

P̂r(I|N) = exp{−πρR2
I(1− eβr)}, (45)

whereβr = [exp{−(1−pmd)M/W}−1](Rc/RI)2.

5.3 Performance evaluation

In this section we evaluate the performance of extended sensing, using the parameters from
Table 1. The presented results are based on the numerical evaluation of (1) for random and
cooperative sensing extension, (2) for optimal sensing extension and (41), (42) and (44) for
the capacity limits of the different schemes.

We consider first the relationship betweenρ , the average density of the cognitive net-
work and the size of the nominal sensing budgetW that is required to maximize the effective
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cognitive capacity. This is an important design factor, as it determines the spectrum that
should be "reserved" for the particular cognitive network to maximize spectrum efficiency.

Figure 8(a) depicts the optimal value ofW as a function of the density of the cognitive
network, for the random and coordinated sensing extension schemes and the average of the
optimal values for the optimal sensing scheme. For the optimal schemeW increases linearly
with the number of SUs. When we consider networks with high density the nominal budget
required by the coordinated and random schemes has a similarlinear behavior. For low
or average densities, however, an increased frequency budget is required, to compensate
for the reduced quality of cooperative sensing. The optimalsensing budget in the case
of random sensing is lower compared to the required ones under coordinated and optimal
sensing. This is explained by the need to keep the number of SUs sensing a band reasonably
high, even for the bands that happen to be selected by relatively few SUs.

Figure 8(b) shows the effective cognitive capacity with respect to the average density
of the cognitive network, together with the asymptotic limits atρ → ∞. We recall from

Figure 4 that under the consideredP(max)
I = 10−3, limited sensing withW = M achieved

maximum performance ofC ≈ 0.28 at a density of ca. 800 users/km2. Considering sensing
extension with random sensing we observe the same peak. The capacity then falls, since,
as reflected in Figure 8(b), in this density region the nominal sensing budget can not be
extended significantly. Finally, the capacity increases with the network density, approach-
ing the limit very slowly. Under coordinated and optimal sensing, the achievable capacity
increases monotonically, approaching the limit with decreasing rate.

Clearly, the optimal sensing scheme outperforms the other discussed policies. The
random sensing is the worst of the three, where the lack of coordination of the individual
sensing processes at the SUs leads to insufficient sensing atsome of the bands. . The gain
of the optimal sensing over the coordinated one is however around 5%, which shows that
coordinated sensing with balanced allocation of sensing resources is an efficient way of
ensuring reliable sensing on all bands. As a result, the small additional gain of optimal
sensing may not justify the additional control and computational complexity.

Finally, we evaluate how the capacity limit is affected by the input parameters, that
is, the interference probability constraint,P(max)

I , and prohibited area radius,RI . We con-
sider the optimal sensing extension scheme, but the behavior of the other schemes is sim-
ilar. As shown in Figure 9, the capacity limit becomes largerthan 1 under loose inter-
ference constraint and small prohibited area, which shows that our approximation in (34),
min{1, j

N } ≈ j
N is not tight in this region. The capacity limit is very sensitive to the size

of the prohibited area; as seen from (41) it decreases with 1/R2
I, a result of the quadratic

increase of interfering SUs that have to share the spectrum resources. The capacity limit
with respect toP(max)

I , however, increases slowly, especially for large prohibited areas. In-
creasing the probability constraint with two orders of magnitude leads to less than doubled
cognitive capacity limit.
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Figure 8: (a): Nominal Sensing Budget for highly dense cognitive networks, for the dif-
ferent sensing coordination schemes, and (b): Effective cognitive capacity for highly dense
cognitive networks, for the different sensing coordination schemes.

6 Conclusion

In this paper we investigated the efficiency of spectrum sensing in dense cognitive net-
works, when the transmission characteristics of the primary and secondary systems are
similar, and consequently the local spectrum sensing performance is highly distance depen-
dent. We introduced the per user effective cognitive capacity as the performance metric, to
reflect that the SUs performing the sensing also aim at utilizing the spectrum. We showed
that the per user cognitive capacity decreases and approaches zero in dense networks if
limited sensing is used, that is, all SUs sense the same set ofbands.

We defined and evaluated different solutions to extend the set of sensed bands by let-
ting each SU to sense only a subset of them. We have shown that extended sensing with
coordination among the users leads to per user cognitive capacity that increases together
with the SU density, converging to a limit which depends on the primary and secondary
transmission characteristics, on the primary interference constraints and on the parameters
of the cooperative sensing. Under random sensing allocation the capacity limit first falls as
in the case of limited sensing, but then stabilizes and increases slightly with the SU den-
sity. Based on the numerical results we concluded that the performance gap of random and
coordinated sensing is significant, while optimizing sensing based on the actual number of
secondary nodes leads to little additional gain.
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Energy E�cient COGnitive MAC for Sensor

Networks under WLAN Co-existence
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Abstract

Energy e�ciency has been the driving force behind the design of commu-
nication protocols for battery-constrained wireless sensor networks (WSNs).
The energy e�ciency and the performance of the proposed protocol stacks,
however, degrade dramatically in case the low-powered WSNs are subject to
interference from high-power wireless systems such as WLANs. In this pa-
per we propose COG-MAC, a novel cognitive medium access control scheme
(MAC) for IEEE 802.15.4-compliant WSNs that minimizes the energy cost
for multihop communications, by deriving energy-optimal packet lengths and
single-hop transmission distances based on the experienced interference from
IEEE 802.11 WLANs. We evaluate COG-MAC by deriving a detailed analytic
model for its performance and by comparing it with previous access control
schemes. Numerical and simulation results show that a signi�cant decrease in
packet transmission energy cost, up to 66%, can be achieved in a wide range of
scenarios, particularly under severe WLAN interference. COG-MAC is, also,
lightweight and shows high robustness against WLAN model estimation er-
rors and is, therefore, an e�ective, implementable solution to reduce the WSN
performance impairment when coexisting with WLANs.

Index terms� WSN, energy e�ciency, cognitive networks, coexistence, IEEE
802.11, IEEE 802.15.4.

1 Introduction

The increasing number of di�erent wireless technologies sharing the open spectrum
bands, such as the 2.4GHz ISM band, demands for a rethinking of the protocols
regulating the spectrum access. As the medium access control (MAC) schemes are
carefully designed for one given technology, they are not anymore able to achieve

∗I. Glaropoulos, M. Laganà, and V. Fodor are with the KTH, Royal Institute of Technology,
Sweden. C. Petrioli is with the University of Roma �La Sapienza�, Italy.
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the objective of e�cient and "fair" sharing of the wireless resources when operating
under interference from heterogeneous technologies.

In this paper we consider the speci�c case of the coexistence of IEEE 802.11
wireless local area networks (WLANs) and IEEE 802.15.4-compliant wireless sensor
networks (WSNs). Both technologies apply carrier sensing-based medium access
control with collision avoidance. In addition, WSNs try to locate the narrow fre-
quency band with less harmful interference for their operations. Unfortunately, all
these techniques do not avoid high interference and frequent packet losses in the
WSN, which are mainly caused by the signi�cantly di�erent transmission band-
widths and powers of the two technologies competing for the same resource.

As shown in [1], the WLAN terminals operate in a relatively broad channel
and at a higher transmission power than WSNs. Therefore, they are blind to the
narrow-band, low-powered WSN transmissions, and do not defer channel access,
due to the overlapping WSN packet transmission.

In all this, the WLAN transmissions remain basically una�ected by the lowWSN
interference, while WSN packets are lost. Fortunately, measurement results show
that the WLAN tra�c is rather bursty with long white spaces, when the channel
is idle because all WLAN users are inactive [2]. Therefore, in order to maximize
its performance, the WSN should be able to transmit in these long interference-free
times, thus, being cognitive of the radio environment as imposed by the WLAN
activity.

In this paper we propose and evaluate a new COGnitive MAC (COG-MAC)
protocol for wireless sensor networks, which extends the carrier sense-based MAC
and aims at minimizing the energy loss due to unsuccessful transmissions over the
interfered channel. Our paper provides the following contributions. 1) We give a
characterization of the WLAN channel usage patterns as seen by the sensor nodes,
taking into account the nodes' limited channel estimation capabilities, and propose
techniques for distributed WLAN usage pattern estimation. 2) Based on these re-
sulting WLAN channel usage characterization we design COG-MAC, that optimizes
the packet length and the transmission distance, and performs WLAN activity-
aware channel access to ensure that WSN nodes transmit in the long WLAN white
space periods. 3) We provide an accurate analytical model that describes the prob-
ability of COG-MAC packet transmission success. We use the model to optimize
the WSN packet size and the single-hop WSN transmission distance to minimize
the normalized energy cost metric, which we de�ne as the energy required to suc-
cessfully transmit and receive a unit of information over a unit of distance. 4) We
show that all the basic components of COG-MAC are essential for achieving the
objective of energy e�cient communication, and COG-MAC, compared to previous
access schemes, reduces the normalized energy cost up to 66%, and can signi�cantly
decrease the end-to-end energy cost in a multihop WSN without increased delay.

The rest of the paper is organized as follows. Related work is presented in
Section 2. Section 3 describes the networking scenario and the interference and
sensing models and Section 4 gives the WLAN channel activity model. In Section 5
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we describe the proposed protocol stack, followed by its mathematical analysis in
Section 6. In Section 7 we present a numerical evaluation of COG-MAC along
with a comparison with traditional WSN MAC schemes, while a simulation study
is presented in Section 8. We conclude the paper in Section 9.

2 Related Work

Energy e�cient communications have been extensively studied for stand alone
WSNs [3][4]. The key idea for energy e�ciency in sensor networks is to minimize
idle listening, by letting the sensors turn o� their radios whenever idle, controlled
by duty-cycling [5][6][7][8][9], or by wake-up radios [10].

It is recognized, however, that cross-network interference can have signi�cant
e�ect on the network performance, as it is shown for coexisting WSNs in [11] and
for WLAN and Bluetooth interference in [12][13]. WSN multi-channel operation
aims at avoiding this cross-network interference by tuning to the best available
band for communication [14][15][16]. These solutions are e�cient as long as there
exist channels with no or low interference, but lose e�ectiveness when all considered
channels su�er from interference with similar statistical behavior.

Therefore, as wireless channels are getting densely populated, it is important
to design protocols that can work e�ciently even in the presence of cross-network
interference. Many of the proposed solutions build on the known characteristics of
the interfering networks. [17] employs narrow-band sensing, with additional HW
cost, to identify and utilize the channels, where the wide-band device can e�ectively
coexist with narrow-band transmissions, while in [18], the sensors force the WLAN
to back o� by sending frequent (one per DIFS), high power jamming signals during
their packet transmission, which needs complex PHY layer and leads to increased
energy consumption in the WSN. Instead, the e�ect of interference is minimized
without changing the WLAN behaviour in [19] and [20] introducing WSN packet
header and payload redundancy.

Recent works investigate how to avoid WLAN interference by employing channel
availability predictions. The case of a non-saturated single WLAN AP is studied
in [21], modeling the packet arrivals at the users as a Bernoulli process. In [22]
a Poisson arrival process is considered, and WLAN output bu�ers are modeled as
M/G/1 queues, resulting in sub-geometric idle period distribution. While these
models capture the e�ect of the WLAN MAC, their generality is limited, since they
are based on simple, rather unrealistic tra�c models.

To capture the e�ect of realistic network load, [2][23][24][25] use tra�c traces to
�nd the distribution of WLAN idle periods. These results show that idle periods can
be short contention periods, in the range of hundreds of microseconds, or heavy-
tailed white spaces, where WLAN users are inactive. As it is demonstrated in
[25], the average white space length depends on the WLAN load and the tra�c
characteristics, and is in the milliseconds range. In [26] similar results are derived
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based on the self-similar nature of WLAN tra�c.
Considering that, due to the low bitrate, the transmission times in the WSN

are comparable to the average WLAN idle period length, it is important to capture
and utilize the heavy-tail characteristics of the WLAN channel usage. Therefore,
in our work we apply the model of [2][27] where a mixture distribution is proposed
to model the idle periods, capturing the two basic sources of inactivity, the long
heavy-tailed white space periods, when the WLAN users are inactive, and the short
contention windows. Given this WLAN channel usage model we claim that the
WSN on one hand needs to avoid channel access in the contention windows and on
the other hand it needs to optimize transmissions in the long white space periods
[28], which are the key functions in the proposed COG-MAC.

3 Networking Scenario, Interference and Sensing

Models

We consider a WLAN Access Point (AP) zone that covers an area where a WSN
is deployed. The WSN nodes are battery-powered and operate on a single 5MHz
channel inside the 2.4GHz ISM band. They transmit information over multiple
hops, and are able to estimate the distance to their neighboring nodes [29].

WLAN users are distributed inside the AP zone and operate on a 802.11 22MHz
channel, covering the WSN channel. The WLAN transmission power is in the order
of 15-20dBm. The WLAN terminals are blind to the WSN nodes [26], that is, the
WLAN carrier-sense mechanism does not detect the low-power WSN signals, which
results in collisions, and hence packet losses in the WSN. On the opposite side,
the WSN nodes transmit with a signal power that is in the order of 0-3dBm [30]
and, thus, their impact on WLAN operation is negligible [23]. Therefore, to ensure
e�cient WSN communication, sensor nodes need to consider the WLAN activity
when transmitting. In the remainder of this section we clarify our assumptions
on the interference and sensing models used throughout the paper. The signal
propagation is assumed to be adequately described by a simple path-loss model.
In order to correctly receive a packet, a WSN node needs to receive it with Signal
to Interference plus Noise Ratio (SINR) above a given threshold, denoted as ζSINR,
where the interference is assumed to be caused by a single active WLAN transmitter.
Then, the path loss-based propagation model results in circular interference zones
around receiving sensors, with radius RI [31]:

RI(r, ζSINR, η, PWSN, PWLAN) = η

√
ζSINRPWLANPL0

PWSNPL0
r−η − ζSINRσ2

N

, (1)

where r is the distance between the transmitting and receiving sensor, η is the
channel path-loss exponent, PWSN is the WSN transmission power, PWLAN is the
fraction of WLAN transmission power inside the narrow WSN band, and PL0

and
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σ2
N denote the attenuation at 1m reference distance and the noise power, respec-

tively. Whenever an overlap occurs between a WSN packet transmission and a
WLAN transmission within the receiving sensor node interference zone of radius
RI , we assume that the WSN packet is lost.

The WSN nodes perform channel sensing based on energy detection through
their build-in Receiver Signal Strength Indicator (RSSI) [30]. In the proposed sys-
tem two kinds of sensing are performed. Repeated sensing over long periods of time
for WLAN activity model estimation, and short-time sensing for channel access
control. The performance of both kinds of sensing is bounded by the maximum
sensitivity level ψ0 of the sensor, stating the minimum signal level that can be
detected [30]. Short sensing time leads to probabilistic energy detection, charac-
terised by the probability of missed detection, pMD, when a signal is not detected,
and the probability of false alarm, pFA, when the sensing results in �signal de-
tected� decision, even when the channel is idle [32]. The false alarm probability
pFA is a function of the sensing time ts and of the energy decision threshold γ,
pFA(ts; γ)=Q((γ − σ2

N )/(σ2
N

√
2/(fsts))), where fs denotes the sampling frequency.

In this paper we consider a target pFA which gives γ as [32]:

γ(pFA) = max
{
ψ0, σ

2
N

[
1 +

√
2/(fsts)Q−1(pFA)

]}
. (2)

The missed detection probability, pMD, depends on the received signal power, PRx(d),
given as a function of the distance, d, to the transmitter, PRx(d) = PWLANPL0

d−η.
It also depends on the decision threshold, γ, which in turn is determined, using (2),
by the target pFA:

pMD(ts, d; γ(pFA)) = 1−Q
(
γ(pFA)− (σ2

N + PRx(d))

σ2
N

√
2/(fsts)

)
. (3)

During the long-period sensing the sensors keep measuring the channel to collect
samples of active and idle period durations. Due to the longer sensing time, pFA
approaches zero. The missed detection probability pMD also approaches zero in-
side the sensors ACCA, the CCA area, where all transmissions are detected, and
approaches 1 outside the ACCA.

Under the path-loss propagation model the CCA area is circular; its radius
depends on the WLAN transmission power and can be controlled by tuning the
CCA threshold ψ≥ψ0 [30]:

RCCA , RCCA (ψ) =

(
ψ − σ2

N

PWLANPL0

)−1/η
. (4)

We derive the COG-MAC performance model considering path-loss-based chan-
nel attenuation. However, the model can be extended for more generic signal atten-
uation models, at the expense of increased analytic complexity. In [33] we give the
extended model, based on channel attenuation enhanced with log-normal shadow-
ing, and evaluate the e�ect of shadowing on the protocol performance in Section 7.
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4 The WLAN Channel Activity Model

We model the WLAN channel activity as a semi-Markovian system of active and
idle periods as originally proposed in [23] and validated in [25]. We call this model
the Global View, since it captures the global WLAN activity. Fig. 1(a) depicts the
states of the Global View model and their merging into a two-state semi-Markovian
chain. The states of Data, SIFS and ACK transmissions are grouped together into
a single Active state and the states that represent the WLAN Contention Window
period (CW) and the WLAN white space (WS) due to user inactivity are merged
into a single Idle state. The distributions of the active and idle states, fA(t) and
fI(t), respectively, de�ne how long the WLAN channel remains in either state. As
proposed in [23], a uniform distribution in a range [αON, βON] su�ciently models the
active channel periods. The idle distribution is modeled as a mixture of uniformly
distributed idle periods within [0, αBK], corresponding to the WLAN contention
periods, and long, zero-location generalized Pareto-distributed idle periods with
parameters (ξ, σ) that capture the heavy-tailed behavior of the white spaces. The
percentage of contention periods p ∈ (0, 1) determines the shape of the mixed idle
distribution, which obtains the following form [23]:

fI(t) , pf
(CW)
I (t) + (1− p)f (WS)

I (t) =

=





p · 1
αBK

+ (1− p) · 1σ (1 + ξ tσ )−
1+ξ
ξ , t ≤ aBK,

(1− p) · 1σ (1 + ξ tσ )−
1+ξ
ξ , t > aBK,

(5)

while the active distribution is given as:

fA(t) =
1

βON − αON
, t ∈ (αON, βON). (6)

We de�ne the WLAN load as the percentage of time the channel is active due to
WLAN operation:

ρ , E[TON]

E[TON] + E[TOFF]
=

αON+βON
2

pαBK2 + (1− p) σ
1−ξ

. (7)

Additionally, this provides the probabilities of active and idle channel at an arbitrary
point in time, pA = ρ and pI = (1− ρ), respectively.

Our objective is that of estimating the parameters of the model by means of
sensor node observations. To this purpose, we de�ne a Local View model by �ex-
tracting� from the Global View the WLAN channel activity as seen by a single
sensor node. Due to sensitivity limitations the sensors detect WLAN transmitters
only within the CCA area, that is, they observe the WLAN activity only partially,
with some probability, given by the observable load parameter pCCA. Assuming
uncorrelated consequent WLAN transmissions the channel activity pattern seen



101

Active

Idle

Data

fA(t)

SIFS ACK

CW

f
(CW )
I (t)

WS

f
(WS)
I (t)

1 1

p

1− p

1

1

⇒ IDLE

fI(t)

ACTIVE

fA(t)

(a)

IDLE

fI(t)

ACTIVE
in CCA

fA(t)

ACTIVE
out CCA

fA(t)
pCCA

1− pCCA 1

1

⇒ IDLE/
ACTIVE
out CCA
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Figure 1: (a): The Global View model with all channel states and the reduced
two-state semi-Markovian model. (b): The 3-state semi-Markovian model and its
2-state equivalent for the Local View channel usage modeling.

by a sensor can be described with a 3-state semi-Markovian system, as shown in
Fig. 1(b), distinguishing between detected and non-detected WLAN activity that
occur with probabilities, pCCA and 1− pCCA, respectively. Finally, by merging the
states at which the sensor detects an idle channel we obtain the Local View, as a
2-state semi-Markovian system with the observable sojourn time distributions fÃ(t)
and fĨ(t). It holds that fÃ(t) = fA(t), but fĨ(t) 6= fI(t), ∀pCCA < 1. The ob-
servable idle channel period consists of a random number of WLAN cycles, that
is, consecutive idle and un-detected active periods, followed by an additional idle
period. Its distribution, fĨ(t), is, therefore, a random-term convolution-based func-
tion of the idle and active time distributions, fI(t) and fA(t), and of the observable
load pCCA, and can be expressed in closed form only in the Laplace transform (LT)
domain, as shown in [34]:

f∗
Ĩ

(s) = f∗I (s) · pCCA / [1− (1− pCCA)f∗I (s)f∗A(s)] , (8)

where f∗(s) denotes the Laplace transform of function f . We discuss the feasibil-
ity of parameter estimation in [34][35], where we propose an estimation algorithm
that integrates dynamically the collected samples, and therefore runs e�ciently on
memory-constrained sensor devices.
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5 The Cognitive WSN

We propose a WSN COGnitive Medium Access Control (COG-MAC) that employs
WLAN usage prediction and channel sensing so as to minimize the energy cost for
unicast WSN communication under WLAN interference. In particular, it aims at
minimizing the transmission energy spent by sensors for transmitting and receiving
data packets. COG-MAC can be combined with some duty-cycling or wake-up
enabled solution that is responsible for minimizing the energy spent due to idle
listening. Therefore, the COG-MAC design does not consider the idle listening
energy costs.

The operation of COG-MAC is divided into two main phases. The �rst one is
the estimation and optimization phase, when a sensor listens to the channel and
gathers samples of the active and idle times, estimates the Local View parameters
and selects the optimal one-hop transmission distance and the optimal packet size.
The second one is the transmission phase, when the sensor transmits and receives
data packets. The sensor moves back to the �rst phase either periodically, or when
it experiences a performance drop, suggesting that the estimated WLAN activity
parameters are no longer valid (i.e., WLAN activity has signi�cantly changed).

5.1 Estimation and optimization

During the estimation phase potential transmitter (TR) and receiver (RR) sensors
listen to the channel and gather active and idle times for estimating the WLAN
channel activity. As shown in Fig. 2(a), they perform the measurements for the
maximized CCA area ACCA (denoted by ATCCA and ARCCA for TR and RR respec-
tively) by using the maximum sensitivity level ψ0, leading to RCCA = RCCA(ψ0).
Based on these measurements they derive the Local View parameters, that is, the
parameters of the functions fA(t), fI(t), and pCCA. The required number of the
samples and thus the length of the estimation phase depends on the target es-
timation accuracy, which in turn is determined by the sensitivity of COG-MAC.
Therefore, we discuss this issue in Section 7.

In addition, for a better estimate of the spatial distribution of the active WLAN
users, each sensor also evaluates p̂TCCA, the common load it can observe within the

overlap of the CCA areas. Speci�cally, it measures the load in the disk area ÂTCCA
by �ltering the measurements with a changed sensitivity level ψ, such that for a
TR�RR distance r, R̂CCA = RCCA − r. At the end of the estimation phase the
sensors receive the observable load values from the potential receivers, denoted by
pRCCA. Based on the locally estimated and received WLAN channel activity model
parameters, the sensors select the transmission parameters that are expected to
result in minimum energy consumption per bit and meter, according to the model
and the implementation given in Section 6. Speci�cally, they optimize the packet
size, to trade-o� the probability of interference with a new WLAN transmission
and the useful information transmitted per packet. They optimize the transmission
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distance, to trade-o� the probability that a new WLAN transmission does not cause
harmful interference andWSN packet transmission can continue even after the white
space period, and the progression towards the multihop destination.

5.2 Transmissions with COG-MAC

The estimation and optimization phase is followed by the transmission phase when
actual network operation occurs. We assume that the WSN operates under a duty-
cycling or wake-up radio based protocol, to limit the energy that is spent in idle
listening [5][7][10]. In case of duty-cycling, the WSN nodes are synchronized. Syn-
chronization gaps are, however, expected, as a result of CPU clock drift, and have
to be accounted for. Their maximum value tmaxSYNC is determined by the frequency
of synchronization data exchange.

Fig. 2(b) shows the COG-MAC operation within a duty-cycle for potential
transmitters (TR) and receivers (RR). The duty-cycle of the TR nodes starts with
a guard time (denoted as SYNC in the Figure) equal to tmaxSYNC, ensuring that channel
sensing and transmission do not overlap due to the lack of perfect synchronization.
The medium access control is a modi�ed CSMA/CA with the key component of
dual channel sensing. As it is shown in Fig. 2(b), the on time of the duty-cycle
begins with two short channel sensing measurements with a duration of ts, sepa-
rated by a time gap of tgap, where αON ≥ tgap ≥ αBK. The sensor's RF circuit
can be powered-o� between the short channel measurements. If the channel state
is correctly detected as idle at both measurements, the sensors can safely assume
that the spectrum was idle in the entire time and characterize the idle period as
a white space. The operation in the rest of the cycle is determined by the sens-
ing result. If any of the measurements have indicated an active state, the sensor
immediately transits to sleep mode to save energy. Instead, sensors with idle mea-
surements stay awake and follow a CSMA/CA-based channel access with RTS/CTS
exchange. RTS/CTS has been shown to be bene�cial in [28], as it allows TR and
RR to share their view on the channel status, and increases the probability that
the current period is indeed a long white-space (and not the case when a WLAN
station is transmitting outside the CCA area), as the total observable load includes
the percentage seen by the RR node. We evaluate the usefulness of RTS/CTS under
�xed packet size in Section 7. Sensors are assumed to transit to sleep mode after
packet transmission, and retransmit packets, if required, in consecutive duty cycle
periods.

6 COG-MAC Optimization

In this Section we de�ne the COG-MAC energy consumption model, and formulate
the packet size and transmission distance optimization problem. This formulation
allows us to trade-o� the probability of successful packet transmission with its use-
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Figure 2: (a):TR and RR CCA areas, ATCCA and ARCCA, and the adapted CCA area

ÂTCCA. (b): Time diagram of COG-MAC operations.

fulness, considering the amount of information transmitted and the distance trav-
elled. Then we present the detailed analytic model of COG-MAC that is required
for the optimization. Due to space limitation the presentation is restricted to the
case of perfect synchronization, RTS/CTS-based access and simple path-loss model.
Interested readers can �nd the respective model extensions in [28][33]. Moreover,
in order to focus on the e�ect of WLAN interference, we consider the case of low
WSN load, when the probability of sensors competing for the channel is low. The
model can be extended for the high load case, including expected delays of channel
access due to contention resolution.

6.1 Energy e�ciency optimization

COG-MAC consumes energy for computing and storing the optimal transmission
parameters, for packet transmission, and for sensing, listening and packet reception.
Below we focus on the energy spent for radio operations, as their energy consump-
tion in typical sensor nodes is at least two orders of magnitude higher than that of
computations. We consider the WSN communication to be energy optimal when the
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energy cost of transmitting and receiving a unit of information at unit distance is
minimized. Therefore, we de�ne the main performance measure as the energy con-
sumption at the TR and RR nodes until successful packet delivery, that is, through
the sequence of possibly unsuccessful and eventually successful RTS/CTS hand-
shake and packet transmission attempts, normalized by the amount of information
transmitted and the distance covered.

We consider a �xed power cost, PWSN
ON , for channel sensing, transmitting, receiv-

ing, and idle listening during the RTS/CTS handshake. Consequently, the expected
TR energy cost of attempting a handshake is eTRhs = PWSN

ON (ths + 2ts), where 2ts,
ths are, respectively, the durations of the repeated sensing and the handshake. The
latter includes the synchronization gap and the RTS/CTS process. Let T denote
the event of successful handshake. Assuming that the WLAN channel state is
uncorrelated at the consecutive handshake attempts, the number of unsuccessful
handshakes has geometric distribution with parameter P{T }, and the expected
energy cost until handshake success becomes:

ETR
hs (r) = eTRhs / P{T }. (9)

At the receiver, the handshake energy cost, eRRhs , depends on whether the node
has participated in the handshake. Under perfect synchronization and considering
ths >> ts the expected cost can be approximated as:

eRRhs ≈
{
eTRhs , RR participates in HS
0, otherwise.

(10)

Similar to (9), the expected handshake cost will be:

ERR
hs (r) = eTRhs

[
1 + (1/P{T } − 1) · P{TP |T }

]
, (11)

with P{TP |T } denoting the probability that RR has participated on an, otherwise,
failed handshake attempt.

The energy cost for transmitting and for receiving a packet with transmission
time t is, similarly, PWSN

ON t. If a packet transmission attempt fails, a new handshake
must be established before attempting a new transmission. Consequently, the ex-
pected energy cost of successful packet delivery with packet transmission time t
becomes:

Etrans(r, t) =
[
ETR
hs (r) + ERR

hs (r) + 2 · PWSN
ON · t

]
/ P{transmission success|T }. (12)

The theoretical optimal packet length and receiver distance, t∗, r∗, as a function of
the parameters, (ξ, σ, p, pCCA, p̂

T
CCA) is given by:

(t∗, r∗) = arg min
t,r
{Etrans(r, t) [r · (RWSNt− L0)]} , (13)

where RWSN and L0 denote the WSN transmission rate and the packet overhead,
respectively. (13) can be easily modi�ed to consider only t or r WSNs with known
node distance or packet size respectively.

We derive the optimal values numerically by solving the above optimization
problems applying the bisection method. For practical implementation the opti-
mization problem can be solved a-priori, and the optimal packet size and next-hop
distance pairs for a set of WLAN load parameter vectors can be stored in the sensor.
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6.2 COG-MAC probability of successful handshake and trans-

mission

In this Section we derive analytically the probabilities of successful handshake and
packet transmission, required in (9), (12), respectively.

The TR starts a handshake by transmitting an RTS packet, if its dual sens-

ing process gave idle channel status. Let Î
(i)
T , Î

(i)
R denote the events that the i-th

channel measurement is idle at the TR and RR nodes, respectively, with i = 1, 2.
The handshake attempt is successful if the RR node is awake, as a result of a pair
of idle measurements, and, additionally, if the communication is not disturbed by
an ongoing, miss-detected WLAN transmission, or by a WLAN transmission that
starts during the period of the handshake within the TR or RR interference regions.
After a successful handshake the packet transmission itself will be successful, if all
WLAN sources within the interference region of the RR remain silent during the
whole packet transmission time. We derive the probability of successful handshake
and transmission in �ve steps.
1) We de�ne the spatial distribution of WLAN sources, as seen by the TR node,
based on the a priori measured observable load values and the TR-RR distance r.
2) Using Bayesian inference we derive the probability of idle and active channel
status at the TR and RR nodes, given the observed idle state measurements at the
TR.
3) We derive the distribution of the interference-free time that remains after the
dual sensing process.

4) Based on the previous steps, we express the probability P{T } , P{T |Î(1)T , Î
(2)
T }

of a successful handshake between the TR and the RR node.
5) Finally, conditioned on the successful handshake, the probability of successful
packet transmission P{transmission success|T } is expressed as a function of trans-
mission distance and packet length.

Let S ∈ S = {I} ∪ {AXY(x, y) : x ∈ X , y ∈ Y} be the channel status. The
status is either idle, I, or active, AXY(x, y), with a WLAN source at distances
(X,Y ) = (x, y) ∈ X ×Y from the TR and RR nodes, respectively (see Fig. 2(a)).
X ×Y denotes the set of all possible WLAN source positions. S(i) ∈ S denotes the
channel status during the i-th sensing measurement, where i = 1, 2.

6.2.1 Spatial distribution of WLAN interfering sources

The spatial distribution of WLAN sources around the TR and RR nodes a�ects their
miss-detection probabilities, as well as the probability that such a source within the
TR/RR interference region starts to transmit during the WSN packet transmission.
As shown in Fig. 2(a), the TR can estimate the joint distribution of the distances
X,Y of a possible active WLAN source based on the a-priori known observable
load values, pRCCA, received from RR, and p̂TCCA, measured by the TR itself. Since

ÂTCCA ⊆ ARCCA, an arbitrary WLAN source lies in the area ÂTCCA with probability
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Figure 3: Diagram for the calculation of remaining time densities.

p̂TCCA, in the area ARCCA \ ÂTCCA with probability pRCCA− p̂TCCA, and in the AP area
outside ARCCA otherwise. Since there is no additional a-priori information available
about the WLAN source locations, the TR assumes that these sources are located
uniformly at random inside the respective areas. In addition, we approximate the
AP area as a disc around TR with radius Rmax. This approximation does not a�ect
the model accuracy signi�cantly, unless the TR happens to be very close to the
border of the AP area. Let fX(x) denote the unconditional probability density
function of distance X, for uniformly random WLAN source locations in an disk
area around TR with radius Rmax. Similarly, fY |X(x, y) denotes the density of
the distance Y from the RR node, given X=x, and fXY (x, y) = fX(x)fY |X(x, y)
denotes the unconditional joint distance density. These functions depend on the
distance r between the two sensors and can be derived through basic geometry.
The distribution of distance X, conditioned on the reported observable load values
p̂TCCA and pRCCA can be expressed as:

pAX (x) =

fX(x) ·





p̂TCCA / νR̂CCA , x ≤ R̂CCA,
FY |X(x,RCCA)(p

R
CCA−p̂TCCA)

νRCCA−νR̂CCA
+

FY |X(x,RCCA)(1−pRCCA)
1−νRCCA

, otherwise,

(14)

where νR̂CCA , νRCCA denote the ratio of the observable areas ÂTCCA and ARCCA, re-
spectively, over the total WLAN AP area with radius Rmax. Similarly, the condi-
tional distance density pAY |X (x, y), can be expressed as:
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pAY |X (x, y) = fY |X(x, y)·

·





p̂TCCA / νR̂CCA , x ≤ R̂CCA(
pRCCA − p̂TCCA

)
/
(
νRCCA − νR̂CCA

)
, x>R̂CCA, y ≤ RCCA

(
1− pRCCA

)
/ (1− νRCCA) , otherwise.

(15)

Finally, we have pAXY(x, y) = fX(x) · pAY |X (x, y) and pAY (y) =
∫
X pAXY(x, y)dx.

6.2.2 Bayesian inference of channel status

We derive now the posterior distribution of channel status,
(
S(1), S(2)

)
, given

the observed TR idle measurements, applying Bayesian formulation. To calculate

P{
(
S(1), S(2)

)
|Î(1)T , Î

(2)
T } we use the following decomposition:

P{
(
S(1), S(2)

)
|Î(1)T , Î

(2)
T } =

= P{S(1)|Î(1)T , Î
(2)
T } · P{S(2)|S(1), Î

(1)
T , Î

(2)
T } =

= P{S(1)|Î(1)T } · P{S(2)|S(1), Î
(2)
T }.

(16)

Conditioned on the �rst idle measurement the channel status is either idle or active
with the following probabilities:

P{I(1)|Î(1)T } = (1− pFA)pI

[∫

X
pMD(u)p

A
(1)
X

(u)du+ (1− pFA)pI

]−1
, (17)

P{A(1)
X |Î

(1)
T } = pMD(x)p

A
(1)
X

(x)

[∫

X
pMD(u)p

A
(1)
X

(u)du+ (1− pFA)pI

]−1
, (18)

P{A(1)
XY|Î

(1)
T } = pMD(x)p

A
(1)
XY

(x, y)

[∫ ∫

XY
pMD(u)p

A
(1)
XY

(u, v)dudv+(1−pFA)pI

]−1

(19)
where p

A
(1)
X

(x) = pA · pAX (x) is the probability that a WLAN source is active at

a distance x from the TR at the time of the �rst measurement, and p
A

(1)
XY

(x, y) =

pA · pAXY(x, y) is the probability that it is active at distances x, y from TR and RR
respectively.

To derive the second term of (16), we �rst express the status transition proba-
bilities, P{S(2)|S(1)}, following Fig. 3. For I(1) (Fig. 3(a),(c)):

P{I(2)|I(1)} = FRI (tgap), (20)

P{A(2)
XY|I(1)} =

(
1− P{I(2)|I(1)}

)
pAXY(x, y). (21)

In the above, FRI (t) denotes the distribution function of the remaining idle time,
TRI , As the time of the �rst measurement is uniformly distributed within the WLAN
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idle period: FRI (t) =
∫∞
t

(1− t
z )fI(z)dz. Similarly, for S(1) = A

(1)
XY, ∀x, y we obtain

(Fig. 3(b)):

P{I(2)|A(1)
XY} =

∫ tgap
0

F I(tgap − z)fRA(z)dz, (22)

with fRA(t) =
∫∞
t

1
z fA(z)dz denoting the density of the remaining active WLAN

period. For S(2) = A
(2)
XY(x, y) we need to distinguish between the cases of a con-

tinuous active period, with the same WLAN source being active, or that of a short
idle period between the measurements (Fig. 3(d)):

P{A(2)
XY|A

(1)
XY(x1, y1)} =

= FRA(tgap)δ(x1, y1) + [1− FRA(tgap)− P{I(2)|A(1)
XY}]pAXY(x, y).

(23)

Finally, we de�ne the channel status probabilities conditioned on the second idle
measurement and based on the a-priori status transition probabilities calculated in
(20)-(23):

P{I(2)|I(1), Î(2)T } = (1−pFA)P{I(2)|I(1)}
(1−pFA)P{I(2)|I(1)}+

∫ ∫
XY pMD(u)P{A(2)

XY
|I(1)}dudv

, (24)

P{A(2)
XY |I(1), Î

(2)
T } =

(
1− P{I(2)|I(1), Î(2)T }

)
pAXY(x, y), (25)

P{I(2)|A(1)
XY , Î

(2)
T } =

(1−pFA)P{I(2)|A(1)
XY }

(1−pFA)P{I(2)|A(1)
XY }+

∫ ∫
XY pMD(u)P{A(2)

XY |A
(1)
XY }dudv

, (26)

P{A(2)
XY |A

(1)
XY (x1, y1), Î

(2)
T } =

pMD(x)P{A(2)
XY |A

(1)
XY (x1,y1)}

(1−pFA)P{I(2)|A(1)
XY }+

∫ ∫
XY pMD(u)P{A(2)

XY |A
(1)
XY }dudv

. (27)

6.2.3 Conditional remaining interference-free time

We de�ne TRF , T
(TR,RR)
RF

as the total interference-free time remaining at the RR
sensor and at both the TR and RR sensors, respectively, after the sensing process

at the nodes, and derive the densities fRF |S(1),S(2)(t) and f
(TR,RR)

RF |S(1),S(2)(t), given the

channel status at the time of the TR measurements. TRF includes the interval
between the end of the second sensing measurement and the start of the following
active WLAN period, and a geometric number of successive WLAN cycles, i.e.
pairs of successive active and idle WLAN periods with density fC(t) = fI(t) ∗
fA(t), representing consecutive WLAN transmissions outside the interference area.
The distribution of TRF can be numerically calculated with the help of Laplace
transform, similar to (8) and for all S(1), S(2) ∈ S:

fRF |S(1),S(2)(t) = L−1
{

pIN f∗Rf |S(1),S(2)(s)

1− (1− pIN )f∗I (s)f∗A(s)

}
, (28)
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For additionally undisturbed TR, we obtain the density:

f
(TR,RR)

RF |S(1),S(2)(t) = L−1




p
(TR,RR)
IN f∗

Rf |S(1),S(2)(s)

1− (1− p(TR,RR)IN )f∗I (s)f∗A(s)



 , (29)

where pIN , the probability that an activated WLAN source interferes with the RR
reception is:

pIN =

{
pRCCA (RI(r)/RCCA)

2
, if RI(r) ≤ RCCA

pRCCA + (1− pRCCA)
(
R2
I(r)−R2

CCA

)
/
(
R2
max −R2

CCA

)
, otherwise,

(30)

and the probability that the source lies, additionally, inside the TR interference
area is given as:

p
(TR,RR)
IN =

∫
y≤RI(r)

∫
x≤RI(r) pAXY(x, y)dxdy. (31)

The interval between the end of the second sensing measurement and the start
of the �rst active WLAN period is denoted by TRf , and its density depends on
the channel status. In the derivations we approximate the sensing period as Ts =
2ts + tgap ≈ tgap, since tgap � ts.

For
(
I(1), I(2)

)
(Fig. 3(a)) we safely classify the idle period as white space, and

consequently: fRf |I(1),I(2)(t) = fRI (t+ tgap)/FRI (tgap). (32)

In the case (A
(1)
XY, I

(2)) (Fig. 3(b)), a transition from active to idle status occurs
sometime z ≤ tgap after the �rst TR measurement, and the idle period may also be
a back-o�, which gives:

f
Rf |A(1)

XY
,I(2)

(t) = 1
FRA (tgap)

∫ tgap
0

fRA(z)
fI(t+tgap−z)
F I(tgap−z)

dz. (33)

For S(2) = A
(2)
XY (Fig. 3(c)) the channel is active at the second measurement,

and the remaining time, TRf , is given by the remaining active and the following
idle period:

f
Rf |I(1),A(2)

XY

(t) = 1
FRI (tgap)

∫ tgap
0

fRI (z)
fC(t+tgap−z)
FA(tgap−z)

dz. (34)

Finally under (A
(1)
XY , A

(2)
XY ) (Fig. 3(d)), the active period may be continuous

between the two measurements, or interrupted by a short idle time. In the case of
continuous active period:

f
Rf |A(1)

XY (x1,y1),A
(2)
XY (x1,y1)

(t) = 1
FRA (tgap)

∫∞
tgap

fRA(z)fI(t+ tgap − z)dz, (35)

while in the case of a short idle period between the measurements, (x1, y1) 6=
(x2, y2):

f
Rf |A(1)

XY ,A
(2)
XY

(t) =

= 1
FRA (tgap)

·
∫ tgap
0

fRA(z1)
∫ tgap−z1
0 fI(z2)
FI(tgap−z1) ·

fcycle(t+tgap−z1−z2)
FA(tgap−z1−z2)

dz1dz2.
(36)



111

6.2.4 TR-RR handshake success

For a TR node aiming at communicating with an RR at distance r we calculate
the probability of successful handshake, conditioned on the idle TR measurements.
The event of handshake success, T , requires, �rst, idle measurements at the re-

ceiver, Î
(1)
R , Î

(2)
R . Second, it requires that no WLAN transmission interferes with

the RTS/CTS handshake. Since the duration of the handshake is expected to be
signi�cantly lower than the WLAN activity dynamics, we approximate the second
constraint as the requirement that all the active WLAN sources lie outside the in-
terference regions of both the TR and the RR for the entire handshake period ths:

P{T |S(1), S(2)} ≈ P{Î(1)R , Î
(2)
R |S(1), S(2)}F (TR,RR)

RF |S(1),S(2)(ths). (37)

If the channel status is indeed idle during both of the TR measurements, i.e.,
(S(1), S(2)) = (I(1), I(2)), the handshake is successful if there is no false alarm at
the RR, and the remaining interference-free time at both the RR and TR is longer
than the total duration of the handshake ths. That is:

P{T |I(1), I(2)} = (1− pFA)2F
(TR,RR)

RF |I(1),I(2)(ths). (38)

With a similar reasoning, the conditional handshake success probability for the
remaining channel status cases becomes:

P{T |A(1)
XY(x, y), I(2)} = (1− pFA)pMD(y)F

(TR,RR)

RF |A(1)
XY
,I(2)

(ths), x ∈ X , y ∈ Y, (39)

P{T |I(1), A(2)
XY (x, y)} = (1− pFA)pMD(y)F

(TR,RR)

RF |I(1),A(2)
XY

(ths), x, y ≥ RI(r), (40)

P{T |A(1)
XY(x1, y1), A

(2)
XY(x2, y2)} =

= pMD(y1)pMD(y2)F
(TR,RR)

RF |A(1)
XY
,A

(2)
XY

(ths), x2, y2 ≥ RI(r).
(41)

The probability of handshake success is then calculated by averaging over all possible
cases (Eq. (42)).

P{T |Î(1)T , Î
(2)
T } = P{T |I(1), I(2)}P{I(1), I(2)|Î(1)T , Î

(2)
T }+

+
∫∫
XY P{T |A

(1)
XY(x, y), I(2)}P{A(1)

XY(x, y), I(2)|Î(1)T , Î
(2)
T }dxdy

+
∫∫
x,y≥RI(r) P{T |I

(1), A
(2)
XY(x, y)}P{I(1), A(2)

XY(x, y)|Î(1)T , Î
(2)
T }dxdy

+
∫∫
XY
∫∫
x2,y2≥RI(r) P{T |A

(1)
XY(x1, y1), A

(2)
XY(x2, y2)}·

·P{A(1)
XY(x1, y1), A

(2)
XY(x2, y2)|Î(1)T , Î

(2)
T }dx1dy1dx2dy2.

(42)

Finally, we calculate the conditional probability P{TP |T } needed in (11) applying
Bayesian inference:
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P{TP |T } , P{RR attempting HS|HS failed} =

= 1− P{RR not attempt. HS|HS failed} =

= 1−P{RR not attempt. HS}/
[
1−P{T |Î(1)T , Î

(2)
T }

] (43)

where P{RR not attempt. HS} = 1 − P{Î(1)R , Î
(2)
R |Î

(1)
T , Î

(2)
T }. To calculate the last

factor, we compute P{Î(1)R , Î
(2)
R |S(1), S(2)}, ∀(S(1), S(2)) from (38)-(41) by substi-

tuting ths = 0, and average over all possible cases as in (42).

6.2.5 Successful packet transmission

Finally, let us express the probability of successful packet transmission, now condi-
tioned on the success of the handshake. We update all (S(1), S(2)), through Bayesian
inference:

P{S(1), S(2)|T } = P{S(1), S(2)|T , Î(1)T , Î
(2)
T } =

P{T |S(1),S(2)}P{S(1)S(2)|Î(1)T ,Î
(2)
T }

P{T |Î(1)T ,Î
(2)
T }

, (44)

where P{T |Î(1)T , Î
(2)
T } is de�ned in (42), the terms P{T |S(1), S(2)} are derived in

the previous section and P{S(1), S(2)|Î(1)T , Î
(2)
T } is derived from (16).

Similarly, we update the total remaining interference-free time, TRF , with re-
spect to the total length of the handshake time, including the synchronization delay,
tThs = ths + tSYNC, as it is measured by the TR node:

FRF |(S(1),S(2)),T (t) = P{TRF ≥ t+ tThs|T
(TR,RR)
RF

≥ tThs} =

= P{TRF ≥ t+ tThs, T
(TR,RR)
RF

≥ tThs}/P{T
(TR,RR)
RF

≥ tThs} ≈
≈ FRF |(S(1),S(2))(t+ tThs)/F

(TR,RR)

RF |(S(1),S(2))(t
T
hs),

(45)

where the respective density functions are given in (28) and (29), and the approx-
imation is valid due to the relatively short WSN handshake time with respect to
the average WLAN cycle duration. Finally, from (42) and (45) we express the
probability that a packet of transmission duration t will be successfully transmitted
as:

P{transmission success|T } =
∑
FRF |(S(1),S(2)),T (t)P{S(1), S(2)|T , Î(1)T , Î

(2)
T }, (46)

where the summation is over all possible channel status S(1), S(2).

7 Numerical Performance Evaluation

We evaluate the performance of COG-MAC, based on the analytic model in Section
6, by comparing it to non-cognitive WSN MAC schemes that � similar to COG-
MAC � are controlled by duty-cycling. In particular, we consider an ALOHA-type
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Table 1: Parameter setup for the performance evaluation
Channel Model
Path-Loss Exponent (η) 3.0

Ref. Distance attenuation (PL0
) Isotropic (λ/(4π)))

2

Noise Power (σ2
N ) -174 dB/Hz

WLAN Properties & Modeling
Bandwidth (BWLAN) 22MHz (802.11x Channel)
Tx-Power 18dBm (22MHz Channel)
Tx-Power inside WSN band (PWLAN) 12dB
Max. back-o� period (αBK) 700µsec
Active period interval (αON, βON) (0.8msec, 1.5msec)
White space Pareto scale (ξ) 0.3095
WSN & CC2420 Properties
Bandwidth (BWSN) 5MHz Zigbee Channel
Tx-Power (PWSN) 1dBm
Tx-Rate (RWSN) 250kbps
Header Length [Packet overhead] (L0) 13 bytes
RTS/CTS Length 6 bytes
Minimum SINR (ζSIR) 5dB
Receiver Sensitivity (ψ) -100 dBm
RSSI Dynamic Range 100dB
Tx/Rx Power Consumption (PWSN

ON ) 55mW
Handshake Duration (ths) 768µsec
Channel Sensing Model
Sampling Frequency (fs) 5MHz
Sensing Time (ts) 16µsec
False Alarm Constraint (pFA) 10−2

Random Access MAC (RAND), where sensors transmit without any channel sensing
before transmission, and a standard 802.15.4-compliant carrier-sense (CSMA) MAC
scheme, where WSN nodes perform the standard channel sensing and RTS/CTS
handshake. The analytic models for CSMA and RAND are similar to that of COG-
MAC and are not presented here due to space limitation. Interested readers can
�nd them in [33], in Sections VII-A, VII-B, respectively. In addition, we evaluate
the e�ect of the channel model on the protocols' performance, by considering log-
normal shadowing. Shadowing a�ects both channel sensing and interference and,
therefore, the resulting energy cost. We present the analytic model extensions for
COG-MAC and CSMA under log-normal shadowing in Sections VI-C and VII-A of
[33], respectively. Finally, to evaluate the importance of the handshake process, we
compare COG-MAC performance with and without RTS/CTS mechanism, derived
from the model in [28]. For all schemes we consider the normalized energy cost
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Figure 4: (a) Comparison of Cognitive and CSMA-based MAC over p and σ, and
(b) normalized energy cost with respect to p for �xed WLAN Load (ρ = 16% and
60%)

metric under optimized transmission distance and packet size as de�ned by (13).
The default parameters of our reference evaluation scenario are listed in Table 1.

7.1 Comparison with RAND & CSMA schemes

Fig. 4(a) compares the normalized energy cost of COG-MAC and CSMA with re-
spect to the parameter p, the percentage of short WLAN back-o� intervals, and
E
[
I(WS)

]
= σ

1−ξ , the average length of white spaces, controlled by the shape pa-
rameter σ of the generalized Pareto distribution. We set the observable load at
the receiving sensor at pRCCA = 0.5. To consider random transmitter location we
randomize p̂TCCA, following a normalized binomial distribution, in [0, pRCCA]. In gen-
eral, increasing p or decreasing E

[
I(WS)

]
increases the load and consequently the

normalized energy consumption for both protocols. Fig. 4(a), however, shows that
COG-MAC signi�cantly outperforms CSMA. In Fig. 4(b) we keep the load constant
at ρ = 16% and 60%, and increase the percentage of the back-o� periods p. Even
in this case COG-MAC shows better normalized energy consumption compared to
both CSMA and RAND. The energy cost of COG-MAC is only marginally a�ected
by the growing percentage of back-o� periods. In contrast, RAND and CSMA,
due to the fact that they have to optimize transmission parameters for the mixture
idle time distribution, cannot provide energy e�cient communication for a large
range of p. Under high percentage of back-o� idle periods RAND exhibits a perfor-
mance drop due to the absence of the RTS/CTS mechanism, as failed transmission
attempts result in a high energy cost at the receiving nodes. On the contrary,
handshake-enabled protocols are more energy e�cient due to a lower rate of packet
transmission failures.
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Figure 5: (a) COG-MAC � CSMA comparison with respect to the normalized energy
cost under log-normal shadowing and (b) �xed packet lengths.

7.1.1 Impact of channel shadowing

Fig. 5(a) compares COG-MAC to CSMA under log-normal shadowing channel
model and for various shadowing standard deviation (σsh) values. Shadowing on
the wireless channel degrades the WSN communication energy e�ciency as it adds
uncertainty in both the WLAN spatio-temporal model estimation and the interfer-
ence calculation, and the degradation is signi�cant for COG-MAC at high WLAN
load. Still, the large performance gap between the two solutions remains.

7.1.2 Impact of the RTS/CTS handshake mechanism

Fig. 5(b) compares the e�ciency of COG-MAC with and without RTS/CTS ex-
change under increasing WLAN channel load � decreasing average white-spaces
duration � and for �xed and optimized WSN packet lengths. We observe that
RTS/CTS is always bene�cial under optimized packet lengths. As discussed in Sec-
tion 7.1 the absence of the handshake mechanism degrades the energy e�ciency
under high channel load. For �xed packet sizes the e�ect of RTS/CTS handshake
depends on the WLAN load. Under high load values, that is, under short expected
white-space durations, the increased performance due to e�cient white-space dis-
covery is limited, thus, it does not compensate for the additional overhead of the
RTS/CTS mechanism.

7.1.3 Impact of the receiver observable load

Let us now investigate the e�ect of the observable load pRCCA on energy e�ciency.
Fig. 6 compares the CSMA and COG-MAC normalized energy cost as a function
of pRCCA and for di�erent p and E

[
I(WS)

]
values. For the CSMA scheme (Fig.

6(a)) the energy cost increases monotonically with the observable load, since the
interference-free time decreases. We can see similar trends for COG-MAC for low
p values in Fig. 6(b). On the contrary, at high p value the COG-MAC energy cost
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Figure 6: Normalized energy cost with respect to the percentage of the observable
WLAN spectrum activity (pCCA).
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Figure 7: Normalized energy cost with respect to the absolute of error in p-
estimation, [p̂− p]. E

[
I(WS)

]
= 36msec (σ = 0.025).

decreases at high pRCCA, because in these scenarios COG-MAC can e�ciently �lter
the short back-o� periods. As a result, COG-MAC can provide energy e�cient
communication despite the limited sensing range, and can decrease the energy cost
with up to 66% compared to CSMA.

7.1.4 Sensitivity to the model parameters

COG-MAC may not be able to use optimal packet size and transmission distance
due to imperfect WLAN Local View parameter estimation and due to the limited
number of options that can be stored in the look-up table in the sensor memory.
Here we study the e�ect of estimation errors on the energy e�ciency. We evaluate
the energy cost under a given WLAN activity model realization, while COG-MAC
variables are optimized in (13) considering erroneous p and σ values. (The results for
the other model parameters are similar.) We present comparative results for CSMA
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Figure 8: Normalized energy cost with respect to the percentage of error in σ-
estimation, [(σ̂ − σ)/σ]. p = 80%.
and RAND. Fig. 7 shows the e�ect of the imperfect estimation of p, for low and
high p values. We see that COG-MAC is not sensitive to estimation error, unless
p is heavily overestimated, since the dual sensing �lters out the back-o� periods.
CSMA and RAND, however, need to take the short back-o� periods into account
for the optimization, and therefore the imperfect estimation of p deteriorates their
performance.

Fig. 8 depicts the sensitivity of the performance on the estimation of σ, the
shape parameter of the white space distribution. For the considered scenario CSMA
and RAND are not sensitive to estimation errors due to the high p value that
makes the estimation of the actual WLAN white spaces less important. COG-
MAC, however, transmits, primarily, in the white spaces, and therefore the over- and
underestimation of σ leads to increased energy consumption. Still up to 50% error
in estimating σ does not have signi�cant e�ect on the energy cost. Based on [34],
this level of accuracy can be achieved by considering 100-1000 idle period samples.
This in turn leads to an estimation time in the order of 1-10 seconds, depending
on the average lengths of the idle periods. The low sensitivity to estimation errors
allows even the use of look-up tables with low granularity. These con�rm that the
proposed approach with local channel estimation and parameter optimization based
cognitive access is a viable solution for sensor networks.

7.2 The e�ect of loose synchronization

In Fig. 9 we evaluate the energy cost of COG-MAC considering the case of imper-
fect synchronization of the TR and RR duty-cycles, based on the model in [33],
Section VI-B. We consider synchronization gaps uniformly distributed in (0, tmaxsync),
E[tSYNC] = tmaxsync/2. We show the e�ect of E[tSYNC] on the normalized COG-MAC
energy cost as a function of the WLAN load, for low and high p values. Since the
shifted double sensing procedures require more time, synchronization gaps decrease
the probability of successful handshake and reduce the interference-free time for
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Figure 9: Normalized communication energy cost with respect to increasing WLAN
load (decreasing expected white-space duration), for di�erent average synchroniza-
tion o�sets. E

[
I(WS)

]
= 60msec.

packet transmission, and therefore can increase the energy cost, as demonstrated
in Fig. 9(a). Fig. 9(b), however, shows that for high p values and low network load
synchronization gaps may slightly improve protocol performance. The time-shift of
the TR and RR sensing times increases the chance of detecting a WLAN transmis-
sion after undetected active period and back-o� time, and consequently increases
the probability that the transmission happens in WLAN white space. All in all,
synchronization o�sets in the order of 100µsec have only a slight impact on the
protocol performance.

8 A Simulation Study of COG-MAC

The model-based evaluation in Section 7 is subject to the two assumptions, i) the
WLAN sources are uniformly distributed around the TR, and ii) the consecutive
handshake and packet transmission attempts in COG-MAC observe independent
WLAN channel status. In addition, to simplify the derived analytical expressions,
we made three approximations in the model, in (10), (37) and (45). We present,
here, a simulation study of COG-MAC, where the above assumptions and approxi-
mations are removed to see their e�ect on the protocol performance. Moreover, we
evaluate COG-MAC in a multihop WSN.

8.1 Implementation and simulation scenario

We simulate the coexisting networks in the NS-Miracle framework [36]. The 802.11b-
compliant NS-Miracle module is used for the WLAN nodes. For the WSN COG-
MAC module we implemented model estimation, sensing, access control and packet
reception model, as described in Sections 3,5. WSN packet losses trigger retrans-
missions, occurring at consecutive duty-cycles of 50msec length. We consider a
single WLAN AP area with a limited set of wireless terminals (WT), operating in
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Figure 10: (a), (b) Comparison between numerical and simulation results for COG-
MAC under various p, σ parametrization sets and (c) average handshake and trans-
mission attempts with respect to increasing percentage of back-o� periods, param-
eterized by the WSN duty-cycle duration.
the high SNR regime. We inject WLAN tra�c by generating a packet stream that
creates a sequence of idle and active periods that follow the proposed parameterized
Global View model, and assign the packets to the WTs and the AP independently
at random. To simulate a practical case we allocate 50% of the injected packets to
the AP, assigning the rest, uniformly, at the WTs. We consider saturated bu�er at
the WSN TRs to minimize simulation time.

8.2 Model validation

We perform controlled experiments for a set of WLAN tra�c parameter pairs
(p,E

[
I(WS)

]
) as follows. For each experiment we �rst place a single RR sensor

uniformly at random at a distance lower than RCCA from the AP and deploy 10
WTs uniformly at random outside the ARCCA. Thus the RR observes 50% of the
WLAN tra�c (pRCCA = 0.5). We determine the optimal distance r∗ and the packet
size for possible p̂TCCA values by the optimal solution of (13), and place the TR
randomly on circle with radius r∗ around the RR. Clearly, this topology leads to
non-uniform WLAN source distribution around TR. To achieve statistically mean-
ingful averages we randomize the location of the RR and the 10 deployed WTs for
100 simulation runs within each experiment. Each simulation run terminates when
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the TR sensor completes the transmission of 500 packets, or, alternatively, when the
simulation time exceeds 1000 seconds. The energy cost is calculated based on the
number of the handshake and transmission attempts that each packet experiences.

Fig. 10 compares the simulation and analytic results for the normalized energy
cost with respect to p (Fig. 10(a)) and with respect to increasing WLAN load ρ, by
decreasing the expected white space durations (Fig. 10(b)). Despite a slight overes-
timation of the communication energy cost by the analytic model, we can conclude
that the model su�ciently captures the performance of COG-MAC. The analytically
evaluated performance of CSMA is also plotted for the sake of comparison.

Fig. 10(c) shows the e�ect of the duration of the WSN duty-cycle on COG-MAC
performance, and thus evaluates the modeling assumption of independent WLAN
channel status at the consecutive dual sensing events. We consider the average per
packet handshake and transmission attempts for duty-cycle periods from 15ms to
100ms. The WLAN load increases with p, while E[IWS] = 36msec. As the duty-
cycle duration increases above 50msec, the simulated performance matches closely
the analytic one, and for 100ms the performance di�erence is negligible, that is,
the time between successive handshake or transmission attempts is long enough for
COG-MAC to experience uncorrelated channel conditions. As the practical WSN
duty-cycles are usually much longer than the ones we consider, we conclude that
the assumption of independent WLAN status during consecutive COG-MAC cycles
is practical.

8.3 Multihop COG-MAC performance analysis

Finally, we study the impact of COG-MAC on the energy e�ciency of multihop
WSN communication under WLAN interference. COG-MAC with energy optimized
shortest path (SP) routing is compared to a benchmark solution with CSMA/CA
and the widely accepted Collection Tree Protocol (CTP) [37], that �nds the shortest
path with the expected number of required transmissions per packet as the link
weight. In COG-MAC the optimal packet sizes may di�er for the links along a
shortest path. To avoid the need for packet fragmentation, the packet size is chosen
at the source node as the minimum of all optimal packet lengths along the path.
Packet size is selected similarly for the benchmark system.

As shown in Fig. 11, we consider a square WSN grid with 5m inter-node distance,
and a source and a destination node in the opposite corners. We place the WLAN
AP in the center of the grid, and many of the WTs close to the AP, to generate
a heterogeneous spectrum occupancy, with higher load around the center. We
compare the performance of the two solutions for a constant Ī(WS) and increasing
p value, i.e., increasing WLAN load. Fig. 11(a) shows the transmission paths for
two case studies with p = 0.2 and p = 0.8, respectively. For low p value, that is, low
WLAN load the shortest paths are identical and traverse along the line connecting
the source and destination node. For high load, however, the CSMA based solution
needs to avoid the area around the AP, and redirects the transmission path to the
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borders, where the WLAN interference is lower. At the same time COG-MAC can
safely transmit along the diagonal. Fig. 11(b) gives the normalized energy and
delivery delay per transmitted bit over the source-destination transmission path.
The COG-MAC based solution outperforms the benchmark system, particularly
when the back-o� period percentage increases but the WLAN load is still moderate.
We can conclude that COG-MAC leads to signi�cant energy savings and lower
delays in multihop WSNs, and, additionally, to optimal routes that are insensitive
to WLAN load changes.
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Figure 11: (a) Topology and transmission paths for COG-MAC and CSMA-based
cross-layer schemes under di�erent percentage of WLAN back-o� periods, p. (b)
Normalized end-to-end energy cost per bit and end-to-end delay with respect to p.
Ī(WS) = 36ms.

9 Conclusion

In this paper we proposed COG-MAC, a cognitive MAC scheme for energy e�cient
WSN operation under WLAN coexistence. The proposed scheme is based on con-
trolling the interference from the coexisting WLAN by predicting its behavior with a
smart channel sensing mechanism that takes into consideration the WLAN channel
usage model. Energy cost minimization is achieved by optimizing the WSN single-
hop transmission distance and packet length, based on the estimated parameters of
the WLAN channel usage model. To solve the optimization problem we derived an
analytic model for the successful single-hop WSN packet communication. Through
numerical evaluation we showed that COG-MAC signi�cantly outperforms other
MAC protocols, especially in case of severe WLAN interference. The evaluation
also revealed that both COG-MAC optimization of packet size and transmission
distance and smart channel sensing are key mechanisms for increasing energy ef-
�ciency. We also presented simulation results to demonstrate the accuracy of the
analytic model and to show that COG-MAC achieves signi�cant gains even in mul-
tihop environment. Consequently, COG-MAC provides a distributed solution, that
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exploits existing functionalities available in current commercial sensor hardware,
and archives energy-e�cient communications in the presence of coexisting WLAN
networks.
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Discrete Stochastic Optimization Based Parameter
Estimation for Modeling Partially Observed

WLAN Spectrum Activity

Ioannis Glaropoulos and Viktoria Fodor ∗

Abstract

Modeling and parameter estimation of spectrum usage in the ISM band
would allow the competing networking technologies to adjust their medium
access control accordingly, leading to the more efficient use of the shared
spectrum. In this paper we address the problem of WLAN spectrum activity
model parameter estimation. We propose a solution based on discrete stochas-
tic optimization, that allows accurate spectrum activity modeling and can be
implemented even in wireless sensor nodes with limited computational and
energy resources.

Index terms— cognitive networks, WLAN spectrum activity, discrete stochas-
tic optimization

1 Introduction
Emerging wireless technologies for local and personal area communication all use the
open Industrial, Scientific and Medical (ISM) band. While the variety of introduced
solutions increases, the protocol stacks are usually optimized for a given application
area, and at the same time assume the exclusive use of the spectrum space. However,
most of the time the different technologies coexist, and communication efficiency
and performance guarantees can only be achieved, if the networks have cognitive
capabilities [1], that is, they are aware of each other and optimize their transmission
parameters and communication protocols accordingly.

Key technologies operating in the ISM band are the IEEE 802.11 wireless local
area networks (WLANs). As WLAN carrier sensing is designed to detect WLAN
signals, it is blind towards the low power, narrow band WSN transmissions. Conse-
quently, if the WSN does not adjust itself to the WLAN operation, it will experience
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harmful interference from the WLAN, while the WLAN itself is not affected signif-
icantly by the narrow band low power WSN interferers.

Previous work in the area of cognitive WSNs includes proposals for novel carrier
sensing and medium access control, and the characterization of the channel usage
in WLAN cells. In [2] the interfering technology is identified based on spectral
signature. In the case of WLAN interferers, the sensors force the WLAN to back
off by sending short, high power jamming signals. The POMDP framework [3]
introduces the concept of partial channel knowledge and proposes optimal sensing
and channel access strategies considering a Markovian channel occupancy model. A
Markovian model, however, may lead to suboptimal WSN operation, and therefore
several works deal with a more accurate channel characterization, considering sub-
geometric [4], hyper-exponential [5] and Pareto [6] idle time distributions.

In [7][8] it is recognized, that the characterization of the idle time can lead to
more efficient cognitive access control, if it captures the two basic sources of WLAN
inactivity, the short, almost uniformly distributed contention windows and the long,
heavy-tailed white space periods, when the WLAN users are inactive. We follow
this approach in our previous work, where we propose cognitive medium access
control and next hop selection for the WSN [9], given the known WLAN channel
idle time distribution. In [10] we define the Local View model of WLAN channel
activity that extends the solution of [7] and takes into account the limited detection
range of the WSN nodes, and propose computationally efficient ways to estimate
the model parameters based on time limited continuous sensing at the sensors.

In this paper we provide a deep analysis of the Local View parameter estimation
based on discrete stochastic optimization. We follow the approach presented in [11],
show that the algorithm converges almost surely to the optimal parameter set, and
evaluate how the size of the state space, the size of the sample set and the number
of iterations affect the estimation accuracy.

The rest of the paper is organized as follows. Section 2 defines the considered
networking scenario along with the WLAN channel activity models and formulates
the parameter estimation as an optimization problem. In Section 3 we give an
overview of the discrete stochastic optimization algorithm proposed in [11]. In Sec-
tion 4 we show that the algorithm converges in the case of the considered parameter
estimation problem and in 5 we evaluate the performance of the algorithm under
practical constraints. We conclude the paper in Section 6.

2 WLAN Idle Time Modeling
We consider an IEEE 802.15.4 compliant WSN operating in the transmission area of
an IEEE 802.11 WLAN. The transmission power of the WLAN terminals is orders
of magnitude higher than that of the coexisting WSN, and the WLAN terminals are
blind towards the WSN transmissions. The protocol stack of the energy constrained
WSN is enhanced by cognitive functionality to optimize the WSN operation. To
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Figure 1: The Global View model with all channel states and the reduced two-state
semi-Markovian model.

perform cognitive control, the WSN needs to know the WLAN channel occupancy
distribution. For this, the sensors perform continuous sensing and collect samples
of busy and idle WLAN period lengths. The sensing is based on the usual Clear
Channel Assessment (CCA) process with energy detection, resulting in a limited
sensing range.

According to [7][8], the Global View of WLAN channel occupancy can be mod-
eled by a semi-Markovian system of Active and Idle periods. Figure 1 depicts all
the states of the WLAN channel and their merging into a two-state semi-Markovian
chain. The states of Data, SIFS and ACK transmission are grouped together into a
single Active state, while the states that represent the WLAN Contention Window
period (CW) and the WLAN White Space (WS) due to user inactivity are merged
into a single Idle state. The sojourn times in the Active state can be modeled by the
uniform distribution fA(t) within [αON, βON]. The idle period distribution, fI(t), is
a mixture distribution with a weight p, that is fI(t) , p · fCWI (t) + (1− p) · fWS

I (t).
fCWI (t) is the distribution of the CW periods, and can be modeled with a uni-
form distribution within [0, αBK]. The WS periods, however, exhibit a heavy-tailed
behavior, and their distribution fWS

I (t) is well approximated by a zero-location
generalized Pareto distribution with parameters (ξ, σ).

Thus, the distribution of the sojourn time in the Idle state, fI(t), is given as:

fI(t) ,





p · 1

αBK
+ (1− p) · 1

σ

(
1 + ξ

t
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)(− 1
ξ−1)

t ≤ αBK

(1− p) 1

σ
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1 + ξ
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This Global View, however, is not fully observable at the individual sensors, that
can detect WLAN transmissions only within a given detection range. Therefore, in
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Figure 2: The 3-state semi-Markovian chain and its 2-state equivalent for the Local
View channel activity modeling.

[10] we define the Local View, that describes the WLAN channel occupancy as seen
by an individual sensor. Assuming that consecutive WLAN transmissions are not
correlated, we introduce a 3-state semi-Markovian system (Figure 2), distinguishing
between detected, and un-detected WLAN activity, that occurs with probabilities
pCCA and (1 − pCCA), respectively. To model the observable sojourn time distri-
butions fÃ(t) and fĨ(t) we define the 2-state Local View model by merging the
states at which the sensor detects an idle channel. It holds that fÃ(t) = fA(t), but
fĨ(t) 6= fI(t), ∀pCCA < 1.

Our objective is to estimate the parameters of fA(t) and fI(t) and the observable
load, pCCA, from a set of samples of fÃ(t) and fĨ(t) obtained through channel
sensing.

As the active period distribution, fÃ(t), is uniform, its parameters αON and
βON are estimated by the lowest and the largest measured active period according
to Maximum Likelihood Estimation (MLE) and the maximum back-off time, αBK,
is given by the WLAN specification. The estimation of the rest of the parameters is
more difficult. An idle channel period observed by an arbitrary sensor consists of a
random number of WLAN “cycles”, that is, consecutive idle and un-detected active
periods, followed by an additional idle period. The locally observable idle period
distribution, fĨ(t), is, therefore, a function of the idle and active time distributions
fI(t) and fA(t), and of the observable load, pCCA, and can not be expressed in a
closed form, even if fA(t) and fCWI (t) are known.

As we show in [10], closed form expression exists in the Laplace domain and,
therefore, we propose to estimate the parameters of fĨ(t) in the Laplace domain.
Since according to the semi-Markovian Local View model the number of consecutive
WLAN cycles is geometrically distributed, the Laplace Transform (LT) of fĨ(t)
obtains the following form:

f∗
Ĩ

(s) = f∗I (s)
pCCA

1− (1− pCCA)f∗I (s)f∗A(s)
, (1)

where f∗I (s), f∗A(s) denote the LT of fI(t), fA(t), respectively.
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3 An Algorithm for Discrete Stochastic Optimiza-
tion for Parameter Estimation

In this Section we review the algorithm for stochastic optimization introduced in
[11], that we use to estimate the parameters of the Local View model. First we define
the necessary notation and then we give the stochastic optimization algorithm, along
with the constraint on convergence.

Let us define by K , {K1,K2, ...,KK} the discrete space of the different alterna-
tives. The number of discrete states, K = |K|, is finite. The optimization problem
we aim at solving is of the following form:

K∗ = arg min
Kn∈K

{c(n) = E[XKn ]} . (2)

That is, the function c(n) can not be evaluated analytically and needs to be esti-
mated through a sequence of random samples {XKn}. We denote by:

L = {L1, ...,LL} ⊂ K (3)

the set of global minimizers of the function c, that is:

∀Li ∈ L,Kn ∈ K \ L, c(Li) < c(Kn) and
∀i, j = 1, 2, ..., L, c(Li) = c(Lj). (4)

In the following we give the original stochastic optimization algorithm as it is
proposed in [11] (Algorithm 1). The search process starts from an arbitrary state,
Ki. In each iteration step, m, it selects a new state Kj uniformly at random and
obtains the observation of a random variable ZKi→Kjlm

to compare the two states.
The value of this random variable can depend on the two states and on lm, which
is a function of the iteration step m. The algorithm moves to the new state if
Z
Ki→Kj
lm

> 0.
Let denote Km the state after iteration m and Qm(Kn) the “popularity” of state

Kn ∈ K, i.e. the number of times the algorithm has visited state Kn until iteration
m. The output of the algorithm, K∗, is chosen as the most visited state.

It is shown in [11] that the algorithm converges almost surely to a minimizer,
i.e. a member of L, after sufficiently large number of iterations, if the following
conditions hold:

Condition 1. For each Ki,Kj ∈ K and l ∈ N, there exists a random variable
Z

(Ki→Kj)
l such that the limit liml→∞ P{Z(Ki→Kj)

l > 0} exists for all Ki,Kj ∈ K
and for all Ki ∈ L,Kj /∈ L,Kn 6= Ki,Kj, and l ∈ N,

lim
l→∞

P{Z(Kj→Ki)
l > 0} > lim

l→∞
P{Z(Ki→Kj)

l > 0}, (5)

lim
l→∞

P{Z(Kn→Ki)
l > 0} ≥ lim

l→∞
P{Z(Kn→Kj)

l > 0}, (6)
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Algorithm 1 A global search for discrete stochastic optimization [11].
Step 0:

Select a starting point K0 ∈ K.
Q0(K0)← 1 and Q0(Kn)← 0,∀Kn ∈ K,Kn 6= K0.
m← 0 and K∗m ← K0. Go to Step 1.

Step 1:
Generate a uniform random variable Jm such that for all Kn ∈ K,Kn 6= Km,
Jm ← Kn with probability 1

K−1 . Go to Step 2.
Step 2:

Generate an observation Rm of ZKm→Jmlm
.

if Rm > 0 then
Km+1 ← Jm.

else
Km+1 ← Km.

end if Go to Step 3.
Step 3:
m ← m + 1, Qm(Km) ← Qm−1(Km) + 1 and Qm(Kn) ← Qm−1(Kn) for all
Kn 6= Km.
if Qm(Km) > Qm(K∗m−1) then
K∗m ← Km.

else
K∗m ← K∗m−1

end if Go to Step 1.
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lim
l→∞

P{Z(Ki→Kn)
l ≤ 0} ≥ lim

l→∞
P{Z(Kj→Kn)

l ≤ 0}. (7)

Condition 2. {lm} is a sequence of positive integers such that lm →∞ as m→∞.

Condition 3. The Markov matrix P defined in the following equations is irre-
ducible.

P(Ki,Kj) = 1
K−1 liml→∞ P{Z(Ki→Kj)

l > 0}
∀Ki,Kj ∈ K,Ki 6= Kj ,

P(Ki,Ki) = 1
K−1

∑
Kj∈K\{Ki} liml→∞ P{Z(Ki→Kj)

l ≤ 0}
∀Ki ∈ K.

4 Local View Parameter Estimation

4.1 The Estimation Process
We apply Algorithm 1 to estimate the parameters of fĨ(t). We discretize the model
parameters ξ, σ and p within the reasonable intervals, and define the state Kn as
the set of model parameters:

Kn , (ξn, σn, pn) .

The fourth model parameter, pCCA, is uniquely determined through Moment Eval-
uation (ME) by the sample mean of the observable idle periods (µ̄) and the rest of
the parameters, i.e.

pCCA =

pαBK
2 + (1−p)σ

1−ξ + αON+βON
2

µ̄+ αON+βON
2

.

We would like to determine the optimal state, K∗ ∈ K, that is the optimal
model parameter set K∗ , (ξ∗, σ∗, p∗), that minimizes the Mean Square Error
(MSE) between the Laplace transform of the idle distribution, f∗

Ĩ
(s), and the LT

given by the system state, f∗
Ĩ

(s;Kn), over S = {s1, s2, . . . sS}, the finite discrete
subset of the s-domain, that is,

(ξ∗, σ∗, p∗) = arg min
Kn∈K

1

S

S∑

k=0

(f∗
Ĩ

(sk)− f∗
Ĩ

(sk;Kn))2. (8)

As f∗
Ĩ

(s) is not known, it needs to be evaluated through the idle period samples
obtained by channel sensing.

To ensure fast parameter estimation, we propose to run the estimation process,
that is, Algorithm 1 parallel to the channel sensing. That is, in each iteration step,
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m, nm new idle period samples are integrated in the empirical LT. The total number
of samples integrated up to iteration m is Nm =

∑m
k=0 nm. We define the empirical

LT, f∗
Ĩe

(s;Nm), of the observable idle time distribution directly from a set of Nm
measured idle period samples, (t1, ..., tNm) as:

f∗
Ĩe

(s;Nm) =
1

Nm

Nm∑

i=1

e−sti . (9)

Comparing the general expression in (2) and the Mean Square Error minimiza-
tion problem in (8) we have:

XKn = MSE(N)
n =

1

S

S∑

k=0

[f∗Ie(sk;N)− f∗I (sk;Kn)]
2
,∀Kn, (10)

where MSE(N)
n denotes the MSE calculated with the N samples, and, consequently,

c(n) = E
[
1
S
∑S
k=0[(f∗Ie(s;N)− f∗I (s;Kn))2]

]
=

= 1
S
∑S
k=0E[(f∗Ie(s;N)− f∗I (s;Kn))2].

(11)

Accordingly, for Algorithm 1 we select lm = Nm and define:

Z
(Ki→Kj)
lm

,XKi−XKj = MSE(lm)
Ki −MSE(lm)

Kj , ∀Ki,Kj ∈ K. (12)

That is, in our algorithm, the process moves to the new state Kj if the MSE is
decreased this way.

4.2 On the Convergence of the Estimation Process
To prove that the proposed parameter estimation algorithm solves the optimization
problem in (8), we proceed as follows. The proof that Condition 2 holds is trivial;
since {lm} defines the number of samples that are integrated in the empirical LT
calculation until step m, it is a sequence of integers that tends to ∞ as m → ∞.
With Lemma 1 we prove that f∗

Ĩe
(s;N) is an unbiased estimator of f∗

Ĩ
(s), and

converges to f∗
Ĩ

(s) as N → ∞. Based on Lemma 1, we prove with Corollary 1
that the minimization of c(n) solves the original problem in (8). Lemma 2 proves
that the particular selection of the random variable Z(Ki→Kj)

lm
,∀Ki,Kj ∈ K satisfies

Condition 1. Lemma 3 shows that in our problem Algorithm 1 converges to the
optimal state, bypassing the requirement for Condition 3 to hold.

Lemma 1. The empirical Laplace Transform as a function of N i.i.d. samples
{t1, ..., tN} can be approximated as

f∗Ie(s;N) =
1

N

N∑

l=1

e−stl .
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and is an unbiased estimator of f∗(s), converging to f∗(s) as N →∞.

Proof. We, first, generate the empirical distribution function, Fe(t;N) based on the
N collected time period samples, T = {t1, ..., tN},

Fe(t;N) =
#samples in T ≤ t

N
.

It is known that Fe(t;N) converges almost surely to the actual CDF, F (t), as
N → ∞, based on the strong law of large numbers. In addition, Fe(t;N) is an
unbiased estimator of F (t), i.e. E[Fe(t;N)] = F (t). Fe(tl) − Fe(tl−1) is, then, an
unbiased estimator for P{t ∈ (tl−1, tl)} = F (tl) − F (tl−1), l = 1, 2, ..., N . We
define the empirical density function, fe(t;N) being non-zero only on the set T , as
follows:

fe(t;N) =
N∑

l=1

[Fe(tl;N)− Fe(tl−1;N)] δ(t− tl),

where δ(t) is the Dirac function and by convention t0 = 0, Fe(t0) = 0. Clearly,

lim
N→∞,tl−tl−1→dtl

Fe(tl;N)− Fe(tl−1;N) = f(tl)dtl

and so

limN→∞
∑N
l=1 [Fe(tl;N)− Fe(tl−1;N)] δ(t− tl) =

=
∫
tl
f(tl)δ(t− tl)dtl = f(t),

consequently fe(t;N) converges to the actual pdf. The empirical Laplace Transform
is defined as

f∗e (s;N) ,
∞∫

0

fe(t;N)e−stdt.

Since Fe(tl)− Fe(tl−1) = 1/N , the above becomes

f∗e (s;N) =
∫∞
0

∑N
l=1

1
N δ(t− tl)e−stdt =

=
∑N
l=1

1
N

∫∞
0
δ(t− tl)e−stdt = 1

N

∑N
l=1 e

−stl .

The convergence of f∗(s;N) is ensured due to the convergence of fe(t;N). Finally,

E[f∗e (s;N)] =

N∑

l=1

1

N
E[e−stl ] = E[e−st] = f∗(s), (13)

so f∗(s;N) is an unbiased estimator of the LT transform.

Corollary 1. The minimization of c(n) in (11) solves the original problem in (8).
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Proof. We have:

c(n) = 1
S

∑S
k=0E

[(
f∗
Ĩe

(sk;N)− f∗
Ĩ

(sk;Kn)
)2]

=

= 1
S

∑S
k=0E

[(
f∗
Ĩe

(sk;N)
)2
− 2f∗

Ĩe
(sk;N)f∗

Ĩ
(sk;Kn)

]
+

+
(
f∗
Ĩ

(sk;Kn)
)2

=

= 1
S

∑S
k=0E

[(
f∗
Ĩe

(sk;N)
)2]
− 2f∗

Ĩ
(sk)f∗

Ĩ
(sk;Kn)+

+
(
f∗
Ĩ

(sk;Kn)
)2
.

For N → ∞ it holds from Lemma 1 that Var
[
f∗
Ĩe

(sk;N)
]

= 0, and consequently,

E

[(
f∗
Ĩe

(sk;N)
)2]

= E
[
f∗
Ĩe

(sk;N)
]2
, so c(n) converges to 1

S

∑S
k=0(f∗

Ĩ
(sk)−f∗

Ĩ
(sk;Kn))2.

Let us now prove, that Condition 1 is satisfied.

Lemma 2. Let us select a random variable Z(Ki→Kj)
lm

as follows:

Z
(Ki→Kj)
lm

= MSE(lm)
Ki −MSE(lm)

Kj .

The variable Z(Ki→Kj)
lm

satisfies Condition 1.

Proof. We start with showing that (5) is satisfied. Let Ki ∈ L, Kj /∈ L, so that

1

S

S∑

k=0

(f∗I (sk)−f∗I (sk;Ki))2<
1

S

S∑

k=0

(f∗I (sk)−f∗I (sk;Kj))2 (14)

We show, first, by direct computation that the mean of Z(Ki→Kj)
lm

, defined in (12)
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is negative.

E[Z
(Ki→Kj)
lm

] =

= E[MSE(lm)
Ki −MSE(lm)

Kj ] =

= E[ 1S
∑S
k=0 (f∗Ie(sk; lm)− f∗I (sk;Ki))2−

− 1
S

∑S
k=0 (f∗Ie(sk; lm)− f∗I (sk;Kj))2]

= 1
SE[

∑S
k=0 (f∗Ie(sk; lm)− f∗I (sk;Ki))2−

− (f∗Ie(sk; lm)− f∗I (sk;Kj))2]

= 1
SE[

∑S
k=0 (2f∗Ie(sk; lm)− f∗I (sk;Ki)− f∗I (sk;Kj)) ·

· (f∗I (sk;Kj)− f∗I (sk;Ki))]
= 1

S

∑S
k=0 (f∗I (sk;Kj)− f∗I (sk;Ki)) ·

·E [2f∗Ie(sk; lm)− f∗I (sk;Ki)− f∗I (sk;Kj)]
(13)
= 1

S

∑S
k=0 (f∗I (sk;Kj)− f∗I (sk;Ki)) ·

· (2f∗I (sk)− f∗I (sk;Ki)− f∗I (sk;Kj))
= 1

S

∑S
k=0 (f∗I (sk)−f∗I (sk;Ki))2−(f∗I (sk)−f∗I (sk;Kj))2

(14)
< 0.

We now show that limlm→∞ Z
(Ki→Kj)
lm

is symmetric around its mean. We write:

Z
(Ki→Kj)
lm

=

= 1
S

∑S
k=0 (f∗Ie(sk; lm)− f∗I (sk;Ki))2−

− 1
S

∑S
k=0 (f∗Ie(sk; lm)− f∗I (sk;Kj))2

= 1
S

∑S
k=0 (2f∗Ie(sk; lm)− f∗I (sk;Ki)− f∗I (sk;Kj)) ·

· (f∗I (sk;Kj)− f∗I (sk;Ki))
= 1

S

∑S
k=0 2f∗Ie(sk; lm) (f∗I (sk;Kj)− f∗I (sk;Ki))−

− 1
S

∑S
k=0 (f∗I (sk;Kj) + f∗I (sk;Ki)) ·

· (f∗I (sk;Kj)− f∗I (sk;Ki)) .

The second term is deterministic and, thus, excluded from the calculations. We
concentrate on the first term.

W
(Ki→Kj)
lm

=
1

S

S∑

k=0

2f∗Ie(sk; lm) (f∗I (sk;Kj)− f∗I (sk;Ki)) (15)

As shown above the empirical LT is generated as f∗Ie(sk; lm) =
∑lm
l=1 e

−sktl

lm
. We
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rewrite (15) as

W
(Ki→Kj)
lm

=

= 1
S

∑S
k=0 2f∗Ie(sk; lm) (f∗I (sk;Kj)− f∗I (sk;Ki))

= 1
S

1
lm

∑S
k=0

∑lm
l=1 2e−sktl (f∗I (sk;Kj)− f∗I (sk;Ki))

= 1
S

∑lm
l=1

[
1
lm

∑S
k=0 2e−sktl (f∗I (sk;Kj)− f∗I (sk;Ki))

]
.

Since the variables tl are i.i.d. so are the variables

gjil =

S∑

k=0

2

S
e−sktl (f∗I (sk;Kj)− f∗I (sk;Ki)) . (16)

As a result, the variable 1
lm

∑lm
l=1 g

ji
l approaches a Gaussian distribution, due to

the Central Limit Theorem, and becomes, thus, symmetric around its mean value.
Consequently, the limit limlm→∞W

(Ki→Kj)
lm

is symmetric around its mean, and so

does limlm→∞ Z
(Ki→Kj)
lm

. Since, additionally, E
[
Z

(Ki→Kj)
lm

]
< 0, it follows that

P{Z(Ki→Kj)
lm

< 0} > P{Z(Ki→Kj)
lm

> 0}. (17)

From the last equation, along with P{Z(Ki→Kj)
lm

< 0} = P{Z(Kj→Ki)
lm

> 0}, follows
Eq. (5).

We proceed with showing that (6) is satisfied. For that, we need to show, first
that the variance of Z(Kn→Kj)

lm
is finite. By direct computation we obtain:

Var
[
Z

(Kn→Kj)
lm

]

= Var
[
MSE(lm)

Kn −MSE(lm)
Kj

]

= Var[ 1S
∑S
k=0 (f∗Ie(sk; lm)− f∗I (sk;Kn))

2

− (f∗Ie(sk; lm)− f∗I (sk;Kj))2]

= Var[ 1S
∑S
k=0 (2f∗Ie(sk; lm)− f∗I (sk;Kn)− f∗I (sk;Kj)) · (f∗I (sk;Kj)− f∗I (sk;Kn))]

We neglect the deterministic term in Z(Kn→Kj)
lm

, resulting in the expression

Var
[
1
S

∑S
k=0 2f∗Ie(sk; lm) (f∗I (sk;Kj)− f∗I (sk;Kn))

]

= Var
[

2
lmS

∑S
k=0

∑lm
l=1 e

−sktl (f∗I (sk;Kj)− f∗I (sk;Kn))
]

=
(

1
lm

)2
Var

[∑lm
l=1 g

nj
l

]
,
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where gnjl is given as in (16). For the time distribution that we consider in [10],
Var[tl] is finite, as a result Var[e−sktl ] is finite. Consequently, the variance of gnjl is
finite as as summation over non-independent variables indexed by sk:

gnjl (sk) =
2

S
e−sktl (f∗I (sk;Kj)− f∗I (sk;Kn))

where

Var
[
gnjl (sk)

]
=

= 4
S2 (f∗I (sk;Kj)− f∗I (sk;Kn))

2 Var[e−sktl ] <∞,

Var
[
gnjl

]
=

S∑

sk=0

S∑

so=0

Cov
[
gnjl (sk), gnjl (so)

]
<∞.

Since Var[gnjl ] <∞, and the gnjl are i.i.d., it is clear that

lim
lm→∞

1

l2m
Var

[
lm∑

l=1

gnjl

]
= 0.

Consequently,
lim

lm→∞
Var

[
Z

(Kn→Kj)
lm

]
= 0. (18)

For i, n ∈ L it, then, holds

lim
lm→∞

P{Z(Kn→Ki)
lm

> 0} ≥ lim
lm→∞

P{Z(Kn→Kj)
lm

> 0} = 0,

since
E[Z

(Kn→Kj)
lm

] < 0.

For n /∈ L
lim

lm→∞
P{Z(Kn→Ki)

lm
> 0} = 1 ≥ lim

lm→∞
P{Z(Kn→Kj)

lm
> 0}, (19)

since
E[Z

(Kn→Ki)
lm

] > 0.

This proves statement (6). Finally, the proof of (7) follows from the proof of (6)
and from

P{Z(Kn→Kj)
lm

≤ 0} =

= P{MSElmKn −MSElmKj}P{Z
(Kj→Kn)
lm

> 0},
∀j, n ∈ K.

(20)
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Lemma 3. Algorithm 1 converges almost surely to a minimizer state.

Proof. Consider, first, the case when Condition 3 holds. Since Conditions 1,2 hold
as well, the requirements for convergence, according to Theorem 3.1 in [11] are
satisfied and Algorithm 1 leads to mean square error minimization. Consider, now,
the case when Condition 3 does not hold. Assume Kn /∈ L. If Kn is transient, then
with probability one the sequence {Km} of visited states will not converge to Kn as
m→∞. Assume now that Kn is positive recurrent. By (19) in Lemma 2 we have
that limlm→∞ P{Z(Kn→Ki)

lm
> 0} > 0,∀Ki ∈ L. Consequently, {Km} and all states

of L belong to the same communicating class, denoted by KI , as well as all the
other positive recurrent Ki /∈ L states. The system is thus reduced to a set of states
KI . Clearly, Condition 1 holds for all states in KI , and a result, the requirements
for Theorem 3.1 in [11] are fulfilled.

5 Performance evaluation
The performance of the discrete stochastic optimization based parameter estimation
depends on the granularity of the state space, K, and on the number an the location
of the s-domain points, on which the empirical and the analytic LTs are compared,
for the MSE calculation. These parameters affect the accuracy of the parameter
estimation, even if the optimal parameter vector is determined by exhaustive search.

In addition, we consider a limited idle period sample size, and terminate the
algorithm when all idle period samples are integrated. This on one hand minimizes
the time spent for parameter estimation, but on the other hand, does not ensure
that the algorithm finds the optimal parameter vector. To evaluate the achievable
estimation performance, we perform parameter estimation with exhaustive search
and with early termination, considering a large set of model compliant traffic traces.
We select 104 (ξ, σ, p, pCCA) parameter vectors, generate a sequence of idle and
active periods for each vector, and run the estimation algorithms. The parameters
are randomized according to Table 1, to cover a wide range of traffic patterns. For
the evaluations presented here we fix S = 103, sk ∈ (100, 105), 1 ≤ k ≤ S, and
integrate one new idle period sample in each iteration step.

As stated in Section 2 it is assumed that the fA(t) parameters can be estimated
correctly and αBK is known. We measure the estimation accuracy by calculating
the mean absolute error (MAE) of the p and pCCA and the mean percentage error
(MPE) of the ξ and σ estimation.

As the number of idle period samples affects the time needed for continuous
sensing and in our case even gives the number of iterations of the optimization
algorithm, it is one of the main design parameters to be considered. Therefore we
evaluate the parameter estimation performance for 103 and 104 idle period samples
and iteration steps. In addition, to evaluate the effect of the size of the state
space of the discrete optimization we change the granularity of the state parameters
{ξi, σi, pi} from 10−1 to 10−5.
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Table 1: Model Parameters
Parameter Distribution Min Max Mean StdDev

ξ Truncated Gaussian 0.1 0.4 0.3095 0.1
σ Truncated Gaussian 1e-4 0.1 0.02 0.2
p Uniform 0.1 1.0

pCCA Uniform 0.1 1.0
αON Uniform 0.0008 0.001
βON Uniform αON 0.0015
αBK Deterministic 0.0007

Figure 3 compares the estimation accuracy of {ξ, σ, p, pCCA} under exhaustive
search and with stochastic optimization with early termination. Considering the
number of integrated samples, we can see that the increased number of samples
improves the estimation accuracy under exhaustive search. At the same time, an
increased state space does not necessarily lead to better estimation accuracy. The
estimation accuracy may increase with increased state space for a while, in this
interval the minimizer is found, and the increased granularity means lower MSE.
However, as the state space is further increased, the minimizer can not anymore
be discovered in the limited number of iterations, and therefore the estimation
accuracy drops. Therefore, the state space size has to be selected carefully, taking
the expected number of samples into account.

The results show that the performance of the proposed algorithm is comparable
to the one of the exhaustive search. A number of samples in the range of 104 and
parameter granularity of 10−3−10−4 gives an estimation accuracy that is sufficient
for the cognitive control as it was shown in [9], while it allows acceptable sensing
times, and a state space size that is implementable on sensor devices with limited
memory.

6 Discussion
In the heterogeneous networking environment of the the open ISM band the pre-
diction of the availability of the wireless resources is a key enabler for the design of
energy efficient wireless networks. In this paper we considered the issue of WLAN
and WSN coexistence. In this case WSN transmissions suffer from WLAN inter-
ference, because the WLAN carrier sensing does not detect the low power, narrow
band WSN transmissions. The sensor network can avoid this interference, if it can
characterize the channel occupancy, and tune its transmission parameters accord-
ingly.

We described a semi-Markovian model of the WLAN channel occupancy, as
observed by the individual sensor nodes and proposed a discrete stochastic opti-



144

1000 10000
0

0.1

0.2

0.3

0.4

Iterations

|M
.P

.E
.| 

(ξ)

1000 10000
0

0.2

0.4

0.6

0.8

|M
.P

.E
.| 

(σ
)

Iterations

1000 10000
0

0.05

0.1

0.15

0.2

Iterations

|M
.A

.E
.| 

(p
)

1000 10000
0

0.05

0.1

0.15

0.2

Iterations
|M

.A
.E

.| 
(p

C
C

A)

gr=10−1

gr=10−2

gr=10−3

gr=10−4

gr=10−5

ex. search

Figure 3: The accuracy of the LT-based estimation with respect to the number
of iterations, and the granularity of the state space. Exhaustive search results are
shown for comparison.

mization based algorithm to estimate the parameters of the idle time distribution
in the Laplace domain. We showed that the proposed solution can achieve the
required estimation accuracy by sequentially integrating the measured idle period
samples and by simultaneously searching for the optimal parameter vector. We can
conclude that the required idle time sample size allows limited sensing times and
the parameter granularity can be low enough for the algorithm to be implemented
in resource limited sensor nodes. Therefore the proposed algorithm can support the
development of cognitive medium access control and routing in WSNs.
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Abstract

The modeling of wireless network traffic is necessary to evaluate the pos-
sible gains of spectrum sharing and to support the design of new cognitive
protocols that can use spectrum efficiently in network environments where
diverse technologies coexist. In this paper we focus on IEEE 802.11 wireless
local area networks and close the gap between two popular levels of modeling,
macroscopic traffic workload modeling and microscopic channel occupancy
modeling. We consider traffic streams generated by established traffic work-
load models and characterize the networking scenarios where a simple, semi-
Markovian channel occupancy model accurately predicts the wireless channel
usage. Our results demonstrate that the proposed channel occupancy model
can capture the channel idle time distribution in most of the scenarios, while
the Markovian assumption can not be validated in all cases.

Index terms— 802.11 networks; traffic models; channel occupancy models;
statistical validation.

1 Introduction

Spectrum sharing among diverse network technologies has been introduced as a
promising solution to increase the efficiency of spectrum utilization in wireless en-
vironments, and thus ease the problem of spectrum scarcity. One of the key com-
ponents of efficient spectrum sharing is cognitive medium access control, building
on the knowledge of the channel usage patterns of the coexisting networks [1].
Therefore, traffic workload and channel occupancy models, either considered to be
known [2] or derived on-line [3], are necessary for protocol design and channel access
optimization. The issue of network coexistence in the open ISM band is particu-
larly relevant due to the proliferation of diverse low-power wireless technologies,
all sharing the ISM spectrum with the high-power Wireless Local Area Networks

∗I. Glaropoulos, A. Vizcàino Luna, and V. Fodor are with the KTH, Royal Institute of Tech-
nology, Sweden. M. Papadopouli is with the University of Crete, Greece.
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(WLANs). Accurate WLAN modeling enables these low-power technologies to al-
leviate harmfull WLAN interference [4] and to ensure an effective use of the shared
open spectrum [5][6].

WLAN modeling can be classified in two main categories, based on the consid-
ered time scale, traffic workload modeling and channel occupancy modeling. Traffic
workload studies involve stochastic analysis and modeling of high-layer traffic statis-
tics, such as user arrival and departure process [7][8][9] and client-generated flow
statistics [10][11][12], the characterization of user traffic [8][13] or the user mobility
[14][15]. In these studies WLAN measurement data is collected via active probing
or passive network monitoring, followed by the statistical processing of the collected
data, when analytic probability distributions are fitted to the empirical traces. Traf-
fic workload models are often specific to a given networking scenario, for example,
[16] considers a campus-wide WLAN and provides detailed multi-level, campus-
wide WLAN traffic modeling where both session and flow statistics are collected
and fitted to analytic distributions. Although sufficiently realistic, these approaches
capture the behavior of WLANs only at a macroscopic level.

Contrary to traffic workload modeling, channel occupancy studies aim at mod-
eling directly the short term temporal behavior of the channel status in WLAN
networks. They characterize the periods when the channel is either active due to a
WLAN packet transmission, or idle. Clearly, the distribution of the active times is
determined by the packet sizes used by the applications, while the distribution of
the idle periods depends on both the process of packet generation and the medium
access control. We can distinguish between analytic and measurement-based stud-
ies, depending on whether the spectrum occupancy model is developed based on
analytic modeling of user behavior and network protocols, or it is extracted from
channel occupancy measurements. The seminal work in [17] gives an analytic model
for the impact of the IEEE 802.11 MAC protocol on channel occupancy, and derives
the network throughput of a single Access Point (AP) WLAN assuming saturated
user traffic, i.e. users always have packets to transmit. The case of a non-saturated
single WLAN AP is studied in [18], modeling the packet arrivals at the users as
a Bernoulli process. In [19] WLAN output buffers are modeled as M/G/1 queues,
resulting in sub-geometric idle period distribution. The generality of these analytic
channel occupancy models, is, however, limited, since they are based on specific,
simple traffic workload models.

As far as measurement-based approaches are concerned, in [20] a hyper expon-
ential distribution is fitted to the empirical idle period distribution derived by traf-
fic traces from an area with heterogeneous wireless devices. In [21] a Markovian
channel occupancy model is developed based on channel measurements extracted
from controlled laboratory environments in the 2.4GHz ISM band. In [22][23] the
heavy-tailed behavior of the idle channel periods is demonstrated and a mixture
distribution is proposed to capture the two basic sources of channel inactivity, the
short, almost uniformly distributed contention windows and the long, heavy-tailed
white space periods, when the WLAN users are inactive. The simplicity of the re-
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sulting semi-Markovian model makes it attractive for analytic performance studies
and cognitive protocol design [5][23][24]. This model considers an idle period length
distribution with a high number of degrees of freedom and, potentially, good fitting
quality, therefore we select it as the candidate channel occupancy model. In [22][23]
it has been validated for a limited set of scenarios, under perfect channel conditions
and considering constant UDP payload traffic with exponential packet inter-arrival
times. In this paper we evaluate it for a wide range of traffic patterns and network
scenarios and define the key factors that affect its accuracy. As traffic traces can not
provide the diversity we are looking for, we build our evaluation on synthetic traces
based on validated traffic workload models. To investigate the generality of the
model, we select three scenarios with significantly different traffic workload charac-
teristics, namely, university campus, conference-hall, and industrial-plant WLANs.

Specifically, we validate the proposed heavy-tail idle period distribution and
the Markovian assumption, that is, the assumption that consecutive idle periods
have independent durations. We focus on the idle periods, as the active period
distribution is not significantly affected by the medium access control, instead, it is
directly determined by the packet sizes in the application mix. The model validation
is completed with an evaluation of its accuracy considering a restricted dataset of
real WLAN traces.

The main contributions of the paper are summarized as follows.

1. Traffic workload and channel occupancy modeling. We define detailed traffic
workload models for the three networking scenarios, and parameterize the
related semi-Markovian channel occupancy model using extensive simulations
of an IEEE 802.11 AP.

2. Evaluation of the idle period distribution. We evaluate the fitting quality of
the channel occupancy model, specifically considering the distribution of the
idle times. Our results indicate that the mixture distribution proposed in
[22][23] is valid in a wide range of networking scnearios.

3. Evaluation of the Markovian assumption. We evaluate the validity of the
Markovian assumption considering the correlation of the consecutive idle time
period lengths. We conclude that the idle period lengths may be correlated at
low or very high load and when the traffic is highly heterogeneous. Therefore
the Markovian assumption has to be applied with care.

4. Model validation with real WLAN traces. We evaluate the fitting accuracy of
the semi-Markovian model as well as the validity of the Markovian assump-
tion, considering a set of real 802.11 channel occupancy traces captured in
diverse WLAN environments. The results are similar to the ones with the
synthetic traces, however, they show as well that real occupancy traces can
reflect unexpected traffic characteristics.

The remainder of the paper is structured as follows. In Section 2 we review
the considered traffic workload and channel occupancy models. In Section 3 we



152

introduce the networking scenarios under study, along with a detailed description
of the multi-layer traffic models. The simulation setup, as well as the employed
statistical validation tools are presented in Section 4. Section 5 presents the results
of the channel occupancy model validation using synthetic WLAN channel occu-
pancy traces, while Section 6 includes the validation over the real WLAN traceset.
Section 7 concludes the paper.

2 Traffic Workload and Channel Occupancy Mod-
els

Session 1

Session 2

Session n

...

...

Session inter-arrival times

(a)

Flow 1

Flow 2

Flow n

...

Flow inter-arrival
times

Flow sizes

...

F
lo

w
n
u
m

b
er

s

(b)

Pkt 1 Pkt 2 ... Pkt n

Packet sizes

Packet inter-arrival
time

(c)

Figure 1: The structure of the multi-layer traffic workload model, comprising of (a)
session-, (b) flow- and (c) in-flow processes.

In this section we define the structure of the multi-layer WLAN traffic workload
model and the analytic model for WLAN channel occupancy that is considered in
the paper.

2.1 Multi-layer WLAN Traffic Workload Model

Fig. 1 depicts the structure of the multi-layer traffic workload model. As suggested
by [16], the sessions (Fig. 1(a)) on the top of the model hierarchy represent the
users of the WLAN. Sessions arrive at the network following a stochastic process
that is, in general, time-variant. A session is characterized by the number of traffic
flows it generates (Fig. 1(b)), and by the inter-arrival times between these flows.
The length of the sessions is not part of the model. A session is considered to be
terminated, when its last flow ends.

A flow is defined as the unidirectional end-to-end packet sequence from a specific
transport-layer source-destination connection or a media stream. Each flow is char-
acterized by its size in bytes (Fig. 1(b)), and the in-flow characteristics given by
the sizes, and the inter-arrival times of the packets (Fig. 1(c)). The in-flow charac-
teristics depend on the particular network application that generates the flow [13].
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Figure 2: The semi-Markovian channel occupancy model and its two-state repre-
sentation.

Note that the effect of the medium access control is not considered in the traffic
workload model.

2.2 Semi-Markovian Channel Occupancy Models

Fig. 2 depicts the IEEE 802.11 WLAN channel occupancy model, originally pro-
posed in [22][23]. The states of the semi-Markovian system correspond to the differ-
ent phases of the WLAN transmission cycle. The channel is Active when there is a
packet, either Data or ACK, under transmission. Neglecting the short Inter-frame
Space (SIFS ) period between a Data and an ACK packet, due to its considerably
short duration, Data, SIFS and ACK states can be merged together into a single
Active state. In the absence of packet transmission the WLAN channel is Idle,
and we distinguish between the short back-off idle periods (BK ) introduced by the
IEEE 802.11 contention resolution mechanism, and the significantly longer idle pe-
riods due to user inactivity, denoted as WLAN white spaces (WS ). Merging the
states BK and WS into a single Idle state, the model is reduced into a two-state,
semi-Markovian model with holding times fA(t), fI(t), respectively. As proposed
in [22] active periods are sufficiently modeled as uniform, while fI(t) needs to be
described by a mixture distribution, which aims at capturing both of the sources of

channel inactivity, that is, the back-off periods with holding times f
(BK)
I (t) and the

white space periods with f
(WS)
I (t). Consequently, fI(t) obtains the form:

fI(t) = pf
(BK)
I (t) + (1− p)f (WS)

I (t), t ≥ 0, (1)
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with the mixture parameter p ∈ [0, 1] defining the probability that an idle period is
a short back-off.

Measurement results in [22] suggest that the back-off period durations can be
modeled with uniform distribution:

f
(BK)
I (t) = 1/αBK, αBK = 0.07msec, (2)

independently from the network load. Note that αBK is not the maximum possible
back-off period in IEEE 802.11 WLANs, however, higher values appeared rarely in
the measurement set [22]. The white space periods are suggested to be modeled by
a zero-location, generalized Pareto distribution:

fgP(t) =
1

σ

(
1 + ξ

t

σ

)− 1
ξ−1

, (3)

with σ and ξ, being the scale and shape parameters, that depend on the actual
network traffic. To capture the effect of access-point beaconing, in this paper we
consider a truncated version of (3). As white spaces are limited by the beacon
period, TB :

f
(WS)
I (t) =

1

σFgP(TB)

(
1 + ξ

t

σ

)− 1
ξ−1

, t ∈ (0, TB), (4)

where FgP(TB) , Pr[TB ≤ t] =
[
1−

(
1 + ξ

σ t
)]−1/ξ

. The average white space

duration is:

I
(WS)

=

∫ TB

0

f
(WS)
I (t)dt ≈ σ

1− ξ , if FgP(TB) ≈ 1. (5)

Note, that this channel occupancy model considers good channel conditions without
the eventual loss of Data or ACK packets. Under packet losses, the Active and Idle
period length distributions are slightly different. Specifically, first, the Active period
may not include the ACK packets, and therefore, the Active time distribution is
affected by the packet loss probability. Note, however, that the estimation is still
straightforward, since the distribution depends only on the Data packet sizes in the
original traffic mix and on the packet loss probability. Still, the length of the ACK
packets is very short compared to the size of the majority of the Data packets.
Second, in the case of Data packet loss ACKs are not transmitted, and the idle
period starts with a short idle time determined by the Net Allocation Vector (NAV)
timer, typically set as the SIFS+ACK duration, in the order of tens of microseconds,
followed by the minimum back-off period. Consequently the maximum of the back-
off period (αBK) is not affected. The loss affects p, the ratio of back-off periods,
but this is a parameter to be estimated. Third, if the ACK is transmitted, but not
received correctly, only p is affected due to the packet retransmission. Consequently,
the proposed model fits well also for modeling the idle-time distribution in scenarios
with transmission errors.
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2.3 Validation of the Channel Occupancy Model

We assess the ability of the aforementioned semi-Markovian channel occupancy
model to capture the statistical behavior of a practical WLAN channel usage, fo-
cusing on the idle time distribution, fI(t). This assessment involves the following
steps:

1. We generate synthetic traffic streams based on the traffic workload model in
Section 2.1, simulate the stream transmissions on a IEEE 802.11-compliant
WLAN, and extract the resulting idle time periods sequence.

2. Then, using the collected idle period samples, we determine TB as the maxi-
mum idle period sample, and estimate the parameters of fI(t), that is ξ and
σ, the shape and scale parameters of the generalized Pareto distribution, and
the mixture p [25].

3. We preform a detailed statistical analysis over the simulated and analytic idle
period traces to evaluate the accuracy of the channel occupancy model.

3 Networking Scenarios

In this paper we focus on three common WLAN networking scenarios, where the
traffic workload is expected to be different:

1. campus WLAN,

2. conference-hall WLAN,

3. industrial-plant WLAN.

3.1 Campus WLAN

To model the traffic demand in the campus WLAN, we follow the session arrival and
flow models of [16]. Table 1 summarizes the proposed distributions and their pa-
rameters. As [16] shows the session arrival intensity varies during the day. However,
it does not change significantly within the time frame at which traffic modeling is
useful for protocol design and evaluation. Therefore the session arrivals are modeled
by a stationary Poisson process with parameter value drawn from a truncated geo-
metric distribution to model arrival intensities reported in [16]. Flow inter-arrival
times are Log-normal, while the number of flows per session and the flow sizes are
modeled by heavy-tailed BiPareto distributions.

As [16] does not discuss in-flow characteristics, we categorize the flows according
to [13] as DNS, Web, FTP, P2P, VoIP, and Video, which gives a highly heteroge-
neous traffic mix, and give the probability that a flow belongs to a given category.
We model the DNS flow as the transmission of a single, uniform-sized packet, since
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Traffic object Distribution Parameters
Session
Session arrival Stationary 1 (min), 928 (max),
[hour] Poisson process (λ) 11(median)

trunc. Geometric
Flow
Flow inter-arrival Log-normal µ=−1.6355, σ=2.6286
times [sec]
Flow numbers BiPareto α=0.07, β=1.75,
per session c=295.38, k=1
Flow sizes [bytes] BiPareto α=0.00, β=1.02,

c=15.56, k=111

Application Web/FTP/P2P PWeb=0.25, PFTP=0.12,
VoIP+Video/Other PP2P=0.33, PV+V=0.21,

Poth=0.09

Table 1: Campus WLAN. Traffic workload model parameters.

Application Packet Size (bytes) Inter-arrival Times (sec)
DNS Deterministic (512) Single Packet
Web Uniform (512, 1536) Exponential (λ = 10−1)
FTP Uniform (892, 1152) Deterministic (10−3)
P2P Exponential (λ = 512) Weibull (0.53, 0.13532)
VoIP Uniform (128, 384) MMDP (λ, µ, T )

λ = 0.1, µ = 0.1, T = 0.03
Video Uniform (384, 768) MMUP (λ, µ, α, β)

λ = 0.1, µ = 0.1, α = 0.03, β = 0.05

Table 2: Packet size and inter-arrival time distributions for the various network
applications.

DNS requests and replies typically have short payload. We characterize the Web
flows with uniform packet sizes and exponential packet inter-arrival times, account-
ing for persistent HTTP connections. FTP flows consist of almost deterministic-size
packets, transmitted back-to-back. To characterize P2P flows, we follow the sug-
gestions in [26] assuming BitTorrent traffic. Finally, we model the VoIP and Video
stream flows considering that they represent Skype traffic and follow the sugges-
tions in [27] on Skype video and voice traffic flow characteristics. The parameters
are summarized in Table 2.

3.2 Conference-hall WLAN

While several conference-hall traffic workload models have been proposed, they do
not follow the structure proposed in [16]. Therefore, we consider the conference-hall
WLAN model proposed in [7], and convert it to the structure proposed in [16]. The
conference-hall model suggests that the session arrival process follows the confer-
ence time schedule, and proposes statistical distributions for the characterization
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Traffic object Distribution Parameters
Session
Session arrival [sec−1] ON/OFF λON=38−1,

MMPP [λON, λOFF] λOFF = 0
Session duration [min] Pareto ξ=0.78, σ = 30.76
Session Workload
Data rate [kbps] Uniform

light (pL = 0.25), µl=15,maxl=60
medium (pM = 0.65), µm∈(15− 80),

heavy (pH = 0.1) maxm∈(60− 175),
maxh=175, µh=80

Application Web (HTTP,HTTPS,SSH) / P fl
Web=0.62, P fl

DNS=0.31
DNS (ICP,ICMP,DNS) P fl

oth=0.07
P vol

Web=0.68, P vol
DNS=0.11

P vol
oth=0.21

Table 3: Conference-hall WLAN. Traffic workload model parameters.

of the session arrival process, the session durations, and the data rate of a session.
It also categorizes the flows according to applications, and gives the probability
distribution of the application mix. Table 3 summarizes the modeling of the traffic
workload. Session arrivals are modeled by an ON/OFF Markov-Modulated Pois-
son Process (MMPP), where the ON state represents the beginning of a conference
event. The session durations are Pareto distributed, while the session data rates are
randomly selected within three different rate intervals, representing light, medium
and heavy traffic, with probabilities pL, pM , and pH , respectively. Once the rate
interval is chosen, the data rate is uniformly selected inside the given interval. The
application mix is characterized by the probability that a flow belongs to a given
application category and additionally by the portion of the traffic an application
category generates.

While this model includes the notion of a traffic flow through the definition of
the application mix, it does not give models for the number of flows per session, for
the flow size and for the flow arrival process. We, therefore, convert the model to
the multi-layer traffic workload model by characterizing the missing model elements
as in [16] and by parameterizing their statistical distributions in order to fit with
the given session, transmission rate and application mix characterization. For each
session we, first, draw the session duration and the data rate according to the model
parameters proposed in [7], and calculate the traffic volume (in number of bits) of
the session. Given the traffic volume and the predefined application mix, we first
determine the number of DNS flows, based on our DNS model in Table 2. Then,
from the number of DNS flows we estimate the number of Web and other flows
and the respective flow sizes, to fit the application mix parameters. Finally we
parameterize the flow inter-arrival time distribution to match the known session
duration.
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Traffic object Distribution Parameters
Session
Session Number Fixed N ∈ (5, 20)
Flow
Flow inter-arrival
time [sec]
- Monitoring Uniform (α, β) α = 5, β = 90
- Alarm occurrence gPareto(ξ, σ) ξ ∈ (0.25, 0.5),

& actuation σ ∈ (5, 10),
Flow size [bytes] Uniform (α, β) α = 512, β = 1536

Packet Statistics
Packet size [bytes] Uniform (α, β) α = 512, β = 1024
Packet inter-arrival Uniform (α, β) α = 1, β = 10
time [msec]

Table 4: Industrial-plant WLAN. Traffic workload model parameters.

3.3 Industrial-plant WLAN

To construct the traffic workload model for the industrial-plant scenario, we consider
an 802.11 network with a single access point, serving as a backbone for a sensor
network deployed for monitoring and actuation purposes. The WLAN terminals are
fixed and forward sensor data towards a data-management center, that is, towards
the WLAN AP, and control data to sensors and actuators. To define the traffic
workload, we follow the use case of [28]. WLAN terminals cover similar areas in the
industrial plant. During normal conditions they receive periodic messages from the
sensors. These messages are first merged into larger packets at the WLAN terminals
and then forwarded to the WLAN AP. Bursty messages arrive from or transmitted
to the AP during alarms.

Consequently, we construct the multi-layer traffic workload model as follows. A
fixed number of sessions is used for modeling the stationary WLAN terminals. We
define two kinds of flows for each session. Flows representing the periodic monitoring
traffic to the WLAN AP exhibit uniform flow inter-arrival times with small support,
to reflect the random delay in the sensor packet aggregation process. The bursty
traffic of alarms is represented by flow inter-arrival times according to heavy-tailed
Generalized Pareto distribution. For both of the flow types we consider uniformly
distributed flow size, representing the slightly different amount of information for-
warded to or received from the data-management center. Similarly, we consider
uniform distribution with small support for the packet sizes and packet inter-arrival
times within the flows. Table 4 summarizes the traffic workload parameters for the
industrial-plant WLAN.
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4 Simulations and Validation Tools

In this Section we describe the simulator framework as well as the analytic tools
that we employ for the validation of the semi-Markovian channel occupancy model.

4.1 Simulation Framework

The considered networking scenarios are simulated on the NSmiracle [29] platform.
In all cases an IEEE 802.11b-compliant network is built, employing existing NSmir-
acle Channel, PHY, MAC and higher layer modules.

We consider a single access point area with a radius of 100m, inside which 802.11
terminals are uniformly distributed. The channel propagation model depends on
the considered networking scenario. For the campus WLAN scenario we assume a
path-loss-based channel model with a moderate exponent value, θ = 2.5. The model
is enhanced by log-normal shadowing with standard deviation σshd = 10dB. For the
in-door scenarios of conference-hall and industrial-plant the channel attenuation is
modeled considering a site-general Indoor ITU model [30] with power decay N = 38,
and zero floor-penetration attenuation. Unless otherwise noted, we use a simplified
PHY layer, where the user terminal transmits with a fixed data-rate of 11Mbps for
the industrial-plant scenario, while for the campus and conference-hall WLAN cases
the rate is inversely proportional to the distance from the AP, in the 1Mbps-11Mbps
interval, to reflect adaptive rate control. In all cases the MAC follows the IEEE
802.11 standard with an IPv4 network layer on the top. Flows are transmitted
with TCP or UDP according to their traffic type. The Session module of the
simulator implements the multi-layer traffic workload model introduced in Section
3. The directions of the flows are selected randomly, for all cases, apart from the
monitoring traffic flows in the industrial-plant scenario, which are always directed
from the terminals to the AP.

Furthermore, we implemented a simple protocol stack for a sensing device. This
device is responsible for continuously measuring the spectrum activity, for collect-
ing a sequence of M samples of idle channel durations, and for building the em-
pirical distribution function, FIe(t;M). It also estimates the parameters of the
semi-Markovian channel occupancy model (p, ξ, σ) based on the collected idle pe-
riod sequences, applying the MLE estimation algorithm in [25]. The outcome of
the estimation is the analytic distribution function FI(t; ξ, σ, p) of the idle time
duration.

4.2 Analytic Validation Tools

Our goal is to validate the semi-Markovian channel occupancy model described in
section 2.2, using the statistics of the idle channel durations collected from the
simulations with the multi-layer traffic workload model.
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We assess the goodness-of-fit by evaluating the D-value of the Kolmogorof-
Smirnoff test, defined as the maximum absolute difference between the analytic
and empirical idle period distribution functions:

D = sup
τ∈T
|FI(τ ; ξ, σ, p)− FIe(τ ;M)| , (6)

where T is the set of collected idle periods. A low D-value indicates the good fitting
performance of the analytic model. We underline that the D-value is a worst-case
metric, as it considers the supremum of the point-wise difference between the two
functions, instead of the average.

The goodness-of-fit is, additionally, evaluated by performing two-sample Kol-
mogorov -Smirnoff (K-S) tests [31], where the collected sequences of idle periods,

T , are tested against synthesized idle period sequences, T̂ , that are generated ran-
domly from the estimated analytic distribution, FI(t; ξ, σ, p). The K-S test assesses
the validity of the null hypothesis, that is, both idle period series can originate from
the same distribution. The test is conducted considering n randomly selected sam-
ples of sequences T , T̂ , denoted as Tn, T̂n, respectively. The evaluation is done by
deriving the following two-sample K-S test statistic:

Kn =

√
n

2
sup

τ∈Tn,τ̂∈T̂n
|FIe(τ ;n)− FIs(τ̂ ;n, ξ, σ, p)| , (7)

where FIs(t̂;n, ξ, σ, p) denotes the empirical distribution of the synthesized random
sequence. We assess the null hypothesis by calculating the p-Value (pKS) of this test,
that is the probability of obtaining a test statistic, Kn, at least as extreme as the
one we observe. We reject the null hypothesis at a significance level of α ∈ (0, 1), if
Kn > Kα, where Kα is the critical value [31] defined as Kα = k : Pr{Kn > k} < α.

For a deeper understanding of the results of the goodness-of-fit tests we show
typical examples of empirical and fitted analytic distributions as well as quantile-
quantile (Q-Q) plots.

In addition to the goodness-of-fit study, we evaluate the hypothesis that the
lengths of the consecutive idle time periods are uncorrelated, an assumption that
is required for the semi-Markovian channel occupancy model. We perform a test of
independence, by comparing the lag-k autocorrelation values of the obtained sample
sequence against a sample sequence that approximates well a white noise series with
low auto-correlation. We generate the white noise reference by sampling the original
idle period sequence with large time gap separations. We repeat the autocorrelation
test using different sub-sequences of the original sample series. For each test we
record the sign of the difference of the lag-k autocorrelation value of the empirical
sample sequence and that of the white noise reference. If the samples of the empirical
idle-period sequence are correlated, a large portion of these sign outcomes will be
positive. If the samples of the tested time series are indeed independent variables,
the autocorrelation values of the empirical sample sequence and the white noise
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Distribution Parameters
Packet sizes [bytes]
Uniform (α, β) (64,192), (256,768), (768,1280)
Exponential (λ) 128 512 1024
Deterministic 128 512 1024
Inter-arrival time [sec]
Uniform (α, β) (0.005, 0.015) (0.05, 0.15) (0.5, 1.5)
Exponential (1/λ) 10−2 10−1 1
Deterministic (µ) 10−2 10−1 1

Table 5: In-flow stochastic models.

reference bare similar statistical behavior and thus, the sign of their difference gives
a Bernoulli (1/2) trial. Therefore, to decide on the validity of the null hypothesis
we compute the difference between the positive and negative sign outcomes for all
tests. We define the p-value of our test as the probability that a Bernoulli(1/2)
sequence gives the same or larger difference as the obtained one. That is, the p-
value reflects the probability that the observed correlation metric can occur in a
sequence of independent samples. We reject the null hypothesis of independence at
a significance level α.

5 Numerical Evaluation

5.1 The Impact of In-flow Characteristics on Fitting Accu-
racy

Multi-layer workload models in general and also [7][16] characterize the higher-level
traffic workload in WLANs, while the modeling of in-flow traffic is not considered.
Therefore, in the first part of this Section we evaluate the influence of the in-flow
traffic characteristics on the fitting performance of the proposed mixed uniform-
Pareto idle period distribution. This evaluation will help us conclude whether the
selection of a particular application mix with application-specific packet size and
packet inter-arrival time distribution can have a significant effect on the fitting
performance.

We consider a single high-level workload configuration, that is, we generate ses-
sions (session arrival times) and flows (number of flows per session, flow arrival
times and flow sizes) considering the campus WLAN model (see Table 1). We use
the same workload configuration for all the experiments. For each experiment we
select a packet size and inter-arrival time distribution pair according to Table 5, and
perform 50 simulation runs (for all but the deterministic packet size, deterministic
inter-arrival time case) collecting M = 104 idle period samples within each run.
Table 6 gives the average D-value for each experiment. The D-values are very low
for all cases with both random packet sizes and random inter-arrival times, and do
not seem to depend on the actual parameter value of the distributions. The mixed
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Pareto distribution, however, does not fit well the empirical data under short, de-
terministic inter-arrival times, especially when combined with deterministic packet
size. We evaluate the reason of the large D-value with the help of Fig. 3, showing
the empirical and analytic idle-period distribution functions for two in-flow config-
urations.
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Figure 3: Examples of fitting performance for different in-flow characteristics: (a):
D-Value = 0.005, Exponential(λ−1 = 512b) packets-size, Uniform(µ = 10−2, σ2 =
10−5s) packet inter-arrival time. (b): D-Value = 0.055, Deterministic(1024b)
packet-size, Deterministic(10−2s) packet inter-arrival time.

Fig. 3(a) shows results with Exponential (λ−1 = 512B) packet size and Uniform
(µ = 10−2, σ2 = 10−5s) packet inter-arrival time, exhibiting a D-value = 0.005,
while Fig. 3(b) with Deterministic (1024B) packet size and Deterministic (10−2s)
packet inter-arrival time, with D-value = 0.055. Under deterministic packet size and
packet inter-arrival time the empirical function, FIe(t;M) is dominated by either
802.11 back-off periods, or idle periods with a duration around 10−2s, generated
between successive packets inside flows. Apparently, the random mixing of the
deterministic packet streams does not lead to generalized Pareto distributed idle
times in this case.

Based on the results in Table 6 we conclude that the in-flow traffic character-
istics may have an impact on the fitting accuracy, and therefore, the validation of
the channel occupancy model under real WLAN scenarios must take into account
realistic, application-dependent in-flow models.

5.2 The Impact of the Networking Scenario on the Fitting
Accuracy

Let us now evaluate the accuracy of the idle time distribution model for the three
scenarios introduced in Section 3, that is, the campus, the conference-hall and the
industrial-pant WLAN, with the multi-layer traffic workload model parameters sum-



163

Packet inter-arrival times [sec]
Packet size Uniform Exponential Deterministic

[bytes] 10−2 10−1 1 10−2 10−1 1 10−2 10−1 1

U
128 .0122 .0151 .0171 .0205 .0165 .0169 .0945 .0220 .0344
512 .0093 .0115 .0177 .0180 .0136 .0176 .0943 .0508 .0291
1024 .0248 .0144 .0181 .0101 .0144 .0171 .0899 .0196 .0356

E
128 .0169 .0218 .0166 .0170 .0229 .0163 .0706 .0287 .0303
512 .0243 .0217 .0168 .0294 .0221 .0167 .0574 .0418 .0280
1024 .0251 .0409 .0163 .0454 .0416 .0157 .0912 .0476 .0314

D
128 .0140 .0097 .0183 .0114 .0094 .0179 .0676 .0665 .0461
512 .0110 .0105 .0185 .0085 .0092 .0181 .1486 .0817 .0455
1024 .0199 .0113 .0178 .0079 .0111 .0178 .1733 .0362 .0448

Table 6: Expected D-value for the various in-flow configurations.
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Figure 4: The resulting parameter space for the idle spectrum period distribution
for the three networking scenarios.

marized in Tables 1, 3, and 4, and the in-flow parameters in Table 2. We simulate
the different scenarios with randomized traffic workload parameters and estimate
the parameters of the idle time distribution based on an input sequence of M = 104

idle period samples, allowing for a 103-samples warm-up period. Depending on the
length of the active and idle time periods this corresponds to different simulation
time durations in the order of 102 − 103 seconds. We perform 103 simulation runs
for each of the scenarios.

Fig. 4 shows the parameter space of the idle time distribution of the semi-
Markovian model obtained from the simulations, considering p, the percentage of

back-off periods, and the average estimated white space duration I
(WS)

defined
in (5). The figures show that the three scenarios present significantly different
parameter spaces. Comparing the three scenarios we can identify the significant
factors that affect the accuracy of the channel occupancy model and determine the
model limitations.
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Figure 5: Campus WLAN. (a) Empirical distribution function of the D-value. (b)
Q-Q plot for the empirical and synthesized idle period series over all simulation
runs.
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Figure 6: Campus WLAN. (a) Average D-value with respect to WLAN channel
load, (b) empirical density function of the channel load.

5.2.1 Campus WLAN

Fig. 5(a) shows the empirical cumulative distribution function of the D-value over
103 simulation runs. The distribution exhibits a low mean, D = 0.0199, and mod-
erate variance with 95% of the cases being lower than 0.04, revealing an excellent
fitting quality. Fig. 5(b) depicts the quantile-quantile plot for the collected and
the synthesized idle series, averaged over all simulation runs. We observe that
the quantile-quantile curve follows closely the x = y axis, which indicates that
the series of the collected and synthesized idle period samples do come from the
same distribution. This is verified as well by the low failing rate of the conducted
Kolmogorov-Smirnoff test, shown in Table 7. The average p-value of the test is
pKS = 0.5714, with a coefficient of variation of CpKS

= 0.0923, while its failing rate
is 7.01%, for the standard significance level, α = 5%.
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D-value pKS CpKS P{pKS ≤ 5%}
Campus 0.0199 0.5714 0.0923 0.0701
Conference-hall 0.0088 0.5335 0.0214 0.0467
Industrial-plant 0.0334 0.4029 0.2103 0.0934

Table 7: Summary of goodness-of-fit evaluation for the considered networking sce-
narios.

Even though the average fitting quality is satisfactory, we would like to identify
the scenarios when the mixed uniform-Pareto distribution fails to adequately model
the idle periods. Therefore, we first classify the simulation results according to the
experienced WLAN channel load, defined as the percentage of the time the channel
is in active state. Fig. 6(a) demonstrates that the channel load affects the D-value.
The fitting accuracy is low in light-loaded cases, and the fitting is rather weak even
at high load values. This indicates that the idle period distribution model is more
suitable for capturing the channel occupancy statistics for moderate load cases. The
empirical density function of WLAN channel load is shown in Fig. 6(b). We observe
that the cases of extreme channel load, which result in poor model fitting quality,
are relatively rare, and therefore we can conclude that the proposed analytic model
is, in general, sufficient for channel occupancy modeling in campus WLANs.

Fig. 7 shows the fitting quality of the semi-Markovian model, when the WLAN
terminals have higher transmission rate capabilities, considering the same traffic as
for Fig. 6. We consider fixed, distance-dependent transmission rate in the 1-54Mbps
range in Figs 7(a),(b), and per packet dynamic rate adaptation in the same range
in Figs 7(c),(d). In both cases the fitting quality follows a similar D-value – WLAN
load trend, as in Fig. 6, indicating that the transmission rates of the terminals do
not significantly affect the characterization of the idle channel period durations.
The fitting quality improves slightly under per packet rate adaptation due to the
additional randomization of active and, consequently, of the idle period lengths.
Due to the high transmission rates we observe a few simulation runs where the
WLAN channel load is relatively low, (1-10%); in these cases the fitting quality is
again relatively weak.

In Fig. 8 we depict the relation between the D-value and the number of active
sessions, that is, all the sessions that arrive and transmit during the simulation
run. Fig. 8(a) suggests that the number of sessions affects the fitting quality of the
model, with low number of sessions leading to low fitting quality. As low number
of sessions usually means low load, we evaluate whether the load or the number of
sessions has dominant effect. In Fig. 8(b) we plot the D-value with respect to the
number of sessions, restricting the study for the cases of low or heavy channel load.
As simulation runs with very low and very heavy load are rare, we select load regions
≤ 25% and ≥ 45% to include a reasonable number of runs. We observe that under
similar channel load, the number of the active WLAN sessions has little impact on
the fitting quality, unless both the network load and the number of sessions are very
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Figure 7: Campus WLAN. (a), (c) Average D-value with respect to WLAN channel
load, (b),(d) empirical density function of the channel load for the case of 802.11 ter-
minals with (a)(b) higher transmission rates and (c)(d) the case of 802.11 terminals
with dynamic rate adaptation.

low. We evaluate the reason of the high D-value in this region by comparing the
empirical and analytic idle period CDFs for a simulation run in Fig. 9(a). As we see,
the empirical CDF first increases rapidly, but then shows heavy-tail characteristics.
Due to the low number of active sessions, each with low load, flows rarely overlap in
time, and the idle period distribution is determined by the in-flow characteristics,
that can not be captured by the generalized Pareto distribution. Fig. 9(a) shows,
additionally, that in low-load cases the percentage of entirely idle beacon intervals
may be significant, therfore, modeling the white-spaces with the truncated density
in (4) is essential for achieving high accuracy.

Fig. 10 shows the relation between the D-value and the level of traffic dispersion
among the active sessions. We define the normalized traffic dispersion, η, as:

η =
N∑

i=1

|li −
1

N
|,
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Figure 8: Campus WLAN. (a) Average D-value with respect to the number of
sessions considering (a) all cases and (b) cases with load below 25%, and above
45%.

where N is the number of active sessions in the measurement window, and li indi-
cates the ratio of total active duration due to session i,

∑N
i=1 li = 1. Thus, η is zero

under completely balanced traffic, low when the network traffic is roughly evenly
distributed among the sessions, while high η values indicate unbalanced traffic load.
Fig. 10(a) suggests that unless it is very high, the traffic dispersion does not have an
impact on the fitting quality. However, as it is shown in 10(b), dispersion has dif-
ferent effects in low and in high load regions. For low or moderate channel load the
fitting accuracy degrades with increasing traffic dispersion. As at high dispersion
the large part of the load is generated by a subset of the sessions, the reason of the
low fitting quality is the same as for the low load – low session number case, that
is, the idle time distribution is determined directly by the in-flow characteristics.
Under high channel load the fitting quality is generally good, apart from the case
of very balanced load. We investigate the reason of the high D-value in this case
in Fig. 9(b). According to the figure, the empirical and analytic CDFs do not fit
at the back-off period interval. High channel load together with balanced traffic
means that many sessions access the wireless channel concurrently. This leads to
high level of contention and thus to the exponential increase of the user back-off
window. The assumption of uniformly distributed back-off period length can not
hold in this case, which degrades the performance of the fitting.

Finally, we investigate the impact of transmission errors on the fitting quality.
Fig. 10(c) depicts the relation between the D-value and the MAC error rate, that is
the percentage of packet transmissions, for which an error has occurred, including
a CCA failure, that is, terminated transmission attempt after maximum back-off,
collision due to hidden terminals, or error in decoding data or ACK packet due
to bad channel conditions. Clearly, the fitting quality degrades at high error rate.
To determine the reasons behind the fitting performance degradation, we plot in
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Figure 9: Campus WLAN. Comparison between the empirical and the analytic
CDF of the idle channel period durations for a single simulation run, considering
(a) low WLAN load (5.17%), and (b) high WLAN load (50.56%) with low dispersion
(η = 69.5%).

Fig. 10(d) the relation between the MAC error rate and the fitting quality for
different WLAN load regions. Under low or moderate channel load, the increased
MAC error rate, mainly, due to bad channel conditions, does not have an effect
on the fitting quality. This is because the packet retransmission scheme of 802.11
does not affect the distribution of the back-off periods and it does not significantly
shrink the channel white spaces. As the channel occupancy becomes high, the MAC
error rate increases mainly because of CCA failures and collisions due to hidden-
terminals, and the increasing D-value reflects that the fitting quality is low due
to the non-uniform distribution of the back-off periods, as a consequence of the
high-load itself.

We can conclude, that in the scenario of a campus WLAN, the mixture distri-
bution, proposed to characterize the idle period lengths, is accurate for the typical
cases with moderate channel load. We have observed that the fitting quality is
worse at low load and at low number of sessions or at high level of traffic dispersion
among the sessions, because in this case very few packet streams are aggregated
and the the in-session flow characteristics determines the idle period distribution.
The fitting quality can be low even at very high, well balanced load, and under high
MAC error rate, as in these cases the back-off period model is not accurate enough.

5.2.2 Conference-hall WLAN

As Fig. 4(b) shows, the conference-hall WLAN exhibits a set of differences compared
to the campus WLAN scenario, with significantly lower variation of the average idle
period length and of the percentage of back-offs across the simulation runs. From
Fig. 11(a) we can see, that D-values, in general, are lower than in the campus
WLAN case. As given in Table 7, their average is D = 0.0088 and this is reflected
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Figure 10: Campus WLAN. Average D-value with respect to the normalized traffic
dispersion among the WLAN users considering (a) all cases and (b) cases with load
below 25%, and above 45%. and with respect to the MAC error rate, considering
(c) all cases and (d) cases with different WLAN load regions.

in the respective Kolmogorov-Smirnoff test where the average p-value is 0.5335, but
with a low coefficient of variation of 0.0214, and, therefore, a low null hypothesis
rejection rate equal to 4.67%. Fig. 11(b) with the Q-Q plot of the collected and
synthesized idle period series shows the same good accuracy, with a good fit up to
very high time values.

As for the campus scenario, let us evaluate how the load, the number of sessions,
the traffic dispersion and the MAC error rate affect the fitting accuracy. Fig. 12(a)
depicts the relation between the network load and the resulting D-value. Similarly
to the campus WLAN scenario, the fitting accuracy is weaker at very low network
load, but after that theD-value becomes low and independent of the load. Moreover,
as shown in Fig. 12(b), the WLAN load ranges, mostly, between 15% and 35%, with
the majority of the simulation runs showing an average load of 20% – 25%, a range
that is significantly shorter than that of the campus WLAN case. The fitting quality
is very good under the typical load levels, showing that the analytic idle time model
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Figure 11: Conference-hall. (a) Empirical distribution function of the D-value. (b):
Q-Q plot for the empirical and synthesized idle period series over all simulation
runs.
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Figure 12: Conference-hall. (a) Average D-value with respect to WLAN channel
load, and (b) Empirical density function of the channel load.

is adequate in the conference-hall scenario. As Fig. 13 shows, the fitting accuracy
in the conference-hall case is not affected by the number of sessions or by the load
dispersion. Higher MAC error rates lead to a slightly decreased fitting quality.
However, contrary to the campus WLAN scenario, both the D-value and the error
rates are relatively low. Error rates are low because packet errors and hidden
terminals are not as frequent due to better channel conditions – as described in 4.1
– while CCA failures are not present as the load does not reach very high values.
Consequently, the low error rates do not significantly affect the fitting accuracy, as
discussed earlier in Fig. 10(d).

Comparing the conference-hall results to the campus WLAN ones, we can see
that the D-values are lower under similar channel load values, and are less affected
by the level of traffic dispersion. This good behavior follows from the in-flow charac-
teristics in the conference-hall scenario. As we can see in Table 3, the traffic is rather
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Figure 13: Conference-hall. Average D-value with respect to (a) the number of
sessions, (b) the normalized traffic dispersion among the WLAN users, and (c) the
MAC error rate.
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Figure 14: Industrial-plant WLAN. (a) Empirical distribution function of the D-
value. (b): Q-Q plot for the empirical and synthesized idle period series over all
simulation runs.

homogeneous, dominated by Web flows, each of them with relatively long, exponen-
tially distributed packet inter-arrival times. The mixed uniform-Pareto distribution
seems to fit very well the idle-time distribution resulting from the aggregation of a
high number of such flows.

We can conclude that the proposed channel occupancy model is accurate for the
conference-hall WLAN scenario.

5.2.3 Industrial-plant WLAN

As illustrated in Fig. 4(c) the channel occupancy in the case of the industrial-plant
WLAN resembles the conference-hall case, with short idle period durations and
low variations in the percentage of back-off idle periods. As shown in Table 7,
the average D-value is 0.0321, higher, compared to the campus and conference-
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Figure 15: Industrial-plant WLAN. (a) Average D-value with respect to WLAN
channel load, and (b) Empirical density function of the channel load.

hall cases. The average p-value of the K-S goodness-of-fit test is, consequently, the
lowest among all cases (0.4029), which, together with a relatively high coefficient
of variation (0.2103) results in the highest null hypothesis rejection rate, 9.34%.
However, the CDF of the D-value, shown in Fig. 14(a) and the Q-Q plot in Fig. 14(b)
still show a good fitting accuracy.

Repeating the evaluation process, we investigate whether the channel load, the
number of sessions, the traffic dispersion, or the MAC error rate affect the fitting
quality. As shown in Fig. 15(a), contrary to the conference-hall case, the fitting ac-
curacy decreases significantly in cases of high channel load (Fig. 15(a)), moreover,
these cases are rather frequent, as shown in Fig. 15(b). We compare the idle period
distribution for moderate and high load cases in Fig. 16. Moderate channel load
leads to good fitting quality (Fig. 16(a)), even though, due to the periodic moni-
toring traffic, the idle distribution, fIe(t;M) is upper bounded, that is, clearly, non
heavy-tailed. Fig. 16(b) evaluates the reason for the high D-value under high load.
The empirical CDF diverges from the analytic one at very low idle period values,
showing that, due to the high contention level, the back-off periods are again non-
uniform, as for the Campus case on Fig 9(b). We show the empirical distribution
of the idle back-off period sequence in Fig. 16(c). Under high contention, back-off
periods extend above the maximum value, αbk = 0.7msec, considered in our model
estimation process, which results in fitting error above αbk. However, the larger
gap is at the lower time values, where the back-off period distribution is clearly
non-uniform. To keep the estimation process feasible, we propose to fit the back-
off period distribution with an exponential-like function, which can resemble the
linear combination of increasing back-off period length, but requires the estimation
of a single parameter. Fig. 16(c) compares the fitting performance of a left-right
truncated exponential distribution with the standard uniform density, indicating,
clearly, that the former is more capable of capturing the real behavior of the 802.11
back-off periods. We have to notice, however, that the estimator algorithm must
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Figure 16: Industrial-plant WLAN. Comparison between the empirical and the
analytic CDF of the idle channel period durations for a single simulation run, con-
sidering (a) moderate WLAN load (34%) and (b) high WLAN load (54.39%). (c)
compares the exponential-based fitting of the back-off WLAN periods, as opposed
to the employed uniform distribution.

be performed after the estimation of the mixture parameter p, which decreases the
achievable accuracy. Still, the empirical CDF diverges from the analytic one even
for low white-space period values. We believe that consecutive contention periods
under the rather bursty traffic of the industrial plant delay the transmission of con-
secutive packets for several time-slots, causing the short white-spaces to disappear.

As shown in Fig. 17(a), the fitting accuracy degrades as well with the number of
WLAN sessions. However, as in this case the number of sessions and the network
load are strongly correlated, the reason for the high D-value is the same as at
the high-load case above. The normalized traffic dispersion is low (η ∈ (20 −
50%)), as the monitoring application generates similar traffic on all WLAN sessions
(Fig. 17(b)), and has little effect on the model accuracy. According to Fig. 17(c),
the MAC error rates can be high, compared to the campus and conference-hall
cases, due to the higher transmission rate (11Mbps), that increases the bit error
rate probability at larger terminal-AP distances. The fitting accuracy degrades with
increasing error rate, as we have seen in the previous scenarios.

To conclude, in the industrial-plant scenario the channel occupancy model is
accurate in many cases, but the fitting quality depends heavily on the channel load
and the MAC error rate. The mixed uniform-Pareto idle period distribution can be
applied with high confidence for networks with up to moderate load and less than
10% MAC error probability.

5.3 Evaluation of the Markovian Assumption

Finally, we investigate whether the durations of the successive WLAN channel idle
periods are independently distributed random variables, which is a fundamental
assumption for the semi-Markovian occupancy model. For the considered three
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Figure 17: Industrial-plant WLAN. Average D-value with respect to (a) the number
of sessions, (b) the normalized traffic dispersion among the WLAN users, and (c)
the MAC error rate.

scenarios we evaluate the effect of the channel load, the number of sessions and the
traffic dispersion, by applying the test for independence, described in Section 4.2.
We consider lag-1 autocorrelation, unless otherwise noted.

For each scenario we conduct 500 simulation runs with randomized traffic work-
load parameters, thus resulting in different channel load, number of sessions and
traffic dispersion values. For each simulation run we collect a sequence of 4 ·104 idle
period samples. The long sequence is divided to 100 intervals of 400-samples length.
We construct the white noise reference sequence by selecting one sample from each
interval. In each interval we select randomly one of the first 100 samples, so as to
guarantee both randomness and a minimum time separation of 300 samples. Then
we perform the lag-1 test of independence within each of the 400-sample intervals,
considering the sub-sequence of the first 100 idle period samples. We finally calcu-
late the p-value of the test over the 100 intervals. Recall, the p-value reflects the
probability that the observed correlation metric can occur in a sequence of inde-
pendent samples. We reject the null hypothesis of independence at a significance
level of α = 5%. We repeat the process 100 times by randomizing the starting point
of the sub-sequences within the corresponding 400-sample intervals, and calculate
the average p-value and the probability that the null hypothesis of independence is
rejected, that is, P (p-value < 5%).

Fig. 18 shows the average p-value of the independence test for the campus WLAN
scenario, along with the percentage of tests with p-value below the 5% significance
level. Fig.18(a) shows the p-value with respect to the channel load. Under low or
moderate load the test shows a high failure rate, suggesting that the successive idle
period durations can not be considered as uncorrelated. The correlation diminishes
at high load values. We observe similar trends in Fig. 18(c), where the failure rate is
high when the number of sessions is low. Under light load and few sessions only a few
flows are intermixed in the AP area. As flows can have very different characteristics
in the campus WLAN case, the idle period distribution can change significantly
in the event of a flow arrival or departure; this results in correlated successive idle
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Figure 18: Campus WLAN. Test for lag-1 independence for the idle period process.
Average p-value and the percentage of p-values below the 5% significance level,
with respect to (a) the WLAN channel load, (c) the number of WLAN sessions,
and (d) the normalized traffic dispersion among the sessions. (b) Lag-50 and lag-
100 independence tests.

period lengths in parts of the measurement period. At high load, or, as more sessions
are active, more flows are transmitted in parallel, and the correlation decreases.
Fig. 18(d) shows the results of the independence test as a function of the traffic
dispersion. Low level of dispersion typically means several sessions transmitting at
an arbitrary point of time, and we experience good independence properties which
deteriorate, as the traffic becomes less balanced and a few sessions dominate the
traffic.

Since the lag-1 correlation is high in many of the considered cases, it is worth to
evaluate how the correlation changes at increased temporal separation. Fig. 18(b)
presents the results of the independence test when the autocorrelation is calculated
for lag-50 and lag-100. We observe that the correlation remains significant even
between temporal separation of 50 samples (lag-50), and it only degrades drasti-
cally for lag-100, when the set of active flows is usually changed. This suggests
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Figure 19: Conference-hall. Test for independence for the idle period process.
Average p-value and the percentage of p-values below the 5% significance level,
with respect to (a) the WLAN channel load, (b) the number of WLAN sessions,
and (c) the normalized traffic dispersion among the sessions.

that idle periods need to have a high temporal distance to be safely considered as
independent.

Fig. 19 depicts the p-value of the independence test for the conference-hall
scenario. As shown in Fig. 19(a),(b), we observe relatively high p-values, that
are only marginally affected by the channel load or the number of sessions. The
effect of dispersion, as shown in Fig. 19(c), is similar to the one in the campus
WLAN scenario (Fig. 18(d)), that is, higher traffic dispersion decreases the p-value
which, however, remains at a rather high level. According to our simulations,
the probability of experiencing high dispersion is low, (P (η > 110) < 0.05), and
consequently there are very few test results in the high dispersion range. This allows
both the p-value and the hypothesis rejection probability to be around 0.5 in this
range.

In general, the hypothesis on the independence of the consecutive idle periods
may hold in the conference-hall scenario. Contrary to the campus WLAN case, the
majority of the traffic is from Web flows with identical packet inter-arrival processes.
Additionally, flow arrival intensities are higher, leading to a high number of con-
current flows intermixed in the AP area; the above reasons result in an aggregated
idle period sequence with low autocorrelation.

Fig. 20 presents the results of the industrial-plant scenario. Here the resulting p-
values are high, particularly at low and moderate load cases (which also implies low
number of sessions in this scenario), as a result of the constant number of sessions
and flows with very similar characteristics (Fig. 20(a),(b)). The p-value drops at
higher load, when increased contention introduces consecutive back-off idle periods
whose statistical properties differ significantly from those of the packet inter-arrival
process. The p-value increases again at very high load, when most of the idle-periods
are back-offs. Finally, Fig. 20(c) indicates that the idle sequence autocorrelation
is almost indifferent to the level of traffic dispersion, which is expected, since the
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Figure 20: Industrial-plant WLAN. Test for independence for the idle period pro-
cess. Average p-value and the percentage of p-values below the 5% significance level,
with respect to (a) the WLAN channel load, (b) the number of WLAN sessions,
and (c) the normalized traffic dispersion among the sessions.

D-value pKS CpKS P{pKS ≤ 5%}
CAFETERIA 0.0322 0.4932 0.0903 0.0783
LIBRARY 0.0356 0.5332 0.1032 0.0888
PSU CS 0.0414 0.3903 0.1895 0.1439
PIONEER 0.0399 0.4598 0.1421 0.0912
POWELLS 0.0674 0.0694 0.0637 0.5532
UG 0.0388 0.3802 0.1453 0.0941

Table 8: Summary of goodness-of-fit evaluation for the considered real trace-based
evaluations

traffic dispersion range is very short.
To summarise, the Markovian assumption holds with high probability in the

conference-hall scenario and in the industrial-plant WLAN, unless the channel load,
and thus the probability of contention are high. In the campus-WLAN scenario,
however, the Markovian assumption is only justified under high channel load, when
a high number of traffic flows are intermixed. The idle sequence autocorrelation
decreases drastically only for a temporal separation in the order of 100 samples.
Nevertheless, based on (1) and the experimental results in Fig. 4(a), the correspond-
ing time distance lies below 1 second. This means that the Markovian assumption
can be applied for relevant protocol design, e.g. in the case of the coexistence of
WLANs and wireless sensor networks with long duty-cycle medium access schemes.

6 Model Validation over Real WLAN Traces

This Section investigates the ability of the proposed 802.11 channel occupancy
model to capture the statistical behavior of a set of real WLAN channel usage data.
We experiment with a set of real, high time-resolution 802.11 traces, captured with
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Figure 21: Aggregate results for fitting accuracy for the considered real WLAN
traces

a commercial sniffer device in diverse WLAN environments [32]. The considered
data set includes traces from campus wireless networks, namely a campus coffee
spot (CAFETERIA), a university library building (LIBRARY) and a university office
building (PSU CS), allowing direct comparison with the results with the synthetic
Campus WLAN traffic. The dataset includes, additionally, traces from a public
hot-spot (PIONEER) and two coffee places (POWELLS, URBAN GRIND (UG)).

The considered traces provide a high (nano-second) resolution timing informa-
tion on packet arrivals and frame-in-the-air durations as well as MAC control infor-
mation including beaconing, and 802.11 control packet transmissions. Thus their
level of detail is appropriate for generating channel occupancy statistics, and, con-
sequently, for our objective of WLAN channel usage characterization. For all traces
there exists an unfiltered version containing all frames correctly deciphered by the
radio capturing device as well as a filtered-by-BSSID (“pcap”) version limiting the
captured trace to the traffic associated with the considered WLAN hot-spot. Note,
however, that the higher-layer traffic characteristics are not known.

As the traces provide idle period sequences that are in the order of 105 samples,
we partition them into shorter sub-sequences of 4 · 104 samples each. We perform
the model parameterization and fitting validation for all sub-sequences and extract
aggregate statistical results, evaluating both the accuracy of the idle-period fitting,
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Figure 22: Examples of empirical distribution fitting for the LIBRARY and the
POWELLS traces.

p-value P (p-value < 5%)
CAFETERIA 0.6592 0.0842
LIBRARY 0.8931 0.0702
PSU CS 0.3931 0.1977
PIONEER 0.5312 0.0951
POWELLS 0.2921 0.3982
UG 0.1932 0.2830

Table 9: Summary of the test for independence for the idle period process in the
considered real trace-based evaluations

as well as the validity of the Markovian assumption.
Fig. 21 depicts the fitting accuracy of the trace set with respect to the average

channel load. In the majority of the cases the trends are similar to the ones with
the synthetic traces.

Table 8 summarizes the fitting accuracy results for the considered traceset. With
the exception of the POWELLS case the proposed modeling of the idle period duration
can effectively capture the statistical behavior of the idle period traces. This is
verified by both the low D-value (Fig. 21) of the cdf-fitting process, as well as the
low fail rate (P (p-value < 5%)) of the related K-S test. The resulting P (p-value <
5%) for the LIBRARY and CAFETERIA complies with the fail-rate evaluated for the
Campus WLAN scenario (Tab. 7), while for the PSU CS case it is higher, due to the
significantly lower WLAN load.

Fig. 22 illustrates a comparative fitting example for sub-sequences taken from
the LIBRARY and POWELLS traces. As shown in Fig. 22(b), the POWELLS trace reflects
a rather unexpected, significant nearly-periodic WLAN activity, resulting in a high
number of WLAN idle periods around 20msec, which does not allow for an accurate
fitting with the generalized Pareto-based white-space distribution.
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Finally Table 9 summarizes the results of the evaluation of the Markovian as-
sumption. For most of the traces the resulting fail rates of the test for independence
and the related p-value are comparable to the ones of the synthetic networking sce-
narios. As for the fitting accuracy test, the POWELLS case with its periodic traffic
exhibits a high fail. The fail rate is rather high even for the UG rate, showing again
that the Markovian assumption has to be handled with care.

7 Conclusions

The modeling of the radio channel occupancy becomes a key issue for the design
of future wireless networks sharing common spectrum bands. In this paper we
considered the special case of IEEE 802.11 WLANs channel occupancy, since these
networks are wide-spread and emerging networks have to adapt their access strate-
gies to WLAN presence.

We addressed the question whether semi-Markovian channel occupancy models
already proposed in the literature, but validated only for very limited use cases, can
be applied in realistic networking environments. As controlled experiments with
large parameter sets are hard to conduct in real testbeds, we performed our study
via simulations. For the simulations we selected three networking scenarios, with
significantly different traffic workload, the university campus, the conference-hall,
and the industrial-plant. We performed detailed study to evaluate whether the
proposed WLAN channel occupancy model with heavy-tail idle time distribution
and the Markovian assumption on the independence of the consecutive idle times
are valid.

Considering the proposed idle time distribution, we can conclude that the accu-
racy is affected by the traffic mix and the network load. The white space distribu-
tion is satisfactory in most of the cases, however, it is not very accurate when the
traffic is very heterogeneous and the load is low, or under heavy, nearly periodic
traffic. The assumption on uniformly distributed back-off periods necessarily fails
under high contention level, for example in cases where the high MAC error rate
and consequent retransmissions moves the network to the high load regime. The
Markovian assumption holds for many of the considered scenarios, but fails again
when the traffic is very heterogeneous and the load is low.

Clearly, both the traffic mix and the networking technology change with time,
therefore, it is necessary to discuss the generality of our results. New services in-
troduce flows with new in-flow characteristics, and the weight of the different flow
types changes with time. Based on our results we can predict with confidence, that
the proposed channel occupancy model will hold in future networking scenarios as
well, apart from the cases when the load is low, with some dominant flows. In those
cases the in-flow characteristics of the dominant flows determines the idle-time dis-
tribution. New networking technologies are expected to increase the transmission
rate in general and to use efficient physical layer techniques that will increase spec-
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trum efficiency. As our results show, these changes do not affect the accuracy of the
proposed channel occupancy model. Power saving options with duty cycling may
introduce periodicity in the channel access of some terminals with low traffic. This
will not affect the channel occupancy characteristics if the aggregate load of the AP
is not very low.
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Enhanced Power Saving Mode for Low-Latency

Communication in Multi-Hop 802.11 Networks

Vladimir Vukadinovic, Ioannis Glaropoulos, and Stefan Mangold

Abstract

The Future Internet of Things (IoT) will connect billions of battery-powered
radio-enabled devices. Some of them may need to communicate with each
other and with Internet gateways (border routers) over multi-hop links. While
most IoT scenarios assume that for this purpose devices use energy-efficient
IEEE 802.15.4 radios, there are use cases where IEEE 802.11 is preferred de-
spite its potentially higher energy consumption. We extend the IEEE 802.11
Power Saving Mode (PSM), which allows WLAN devices to enter a low-power
doze state to save energy, with a traffic announcement scheme that facili-
tates multi-hop communication. The scheme propagates traffic announce-
ments along multi-hop paths to ensure that all intermediate nodes remain
awake to receive and forward the pending data frames with minimum latency.
Our simulation results show that the proposed Multi-Hop PSM (MH-PSM)
improves both end-to-end delay and doze time compared to the standard PSM;
therefore, it may optimize WLAN to meet the networking requirements of IoT
devices. MH-PSM is practical and software-implementable since it does not
require changes to the parts of the IEEE 802.11 medium access control that
are typically implemented on-chip. We implemented MH-PSM as a part of
a WLAN driver for Contiki OS, which is an operating system for resource-
constrained IoT devices, and we demonstrated its efficiency experimentally.

Index terms— Internet of Things; IEEE 802.11; power saving; ad hoc net-
works; multi-hop networks

1 Introduction

Nowadays almost every desktop computer, laptop, tablet, and smartphone is con-
nected to the Internet. The emergence of the Internet of Things (IoT) will provide
global IP connectivity to a broader variety of devices, such as entertainment elec-
tronics, wearable sport gadgets, home appliances, and industrial sensors. Some
of these devices are portable, battery-powered, and need to connect wirelessly to
surrounding devices and Internet gateways. The wireless communication may sig-
nificantly contribute to their overall battery consumption, especially in the case of
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constrained embedded devices. Therefore, minimizing the energy consumption of
wireless interfaces and networking protocols is one of the prerequisites for the IoT.

Figure 1: Application scenario in which smart radio-enabled toys communicate with
decorative lightning (©Disney).

Different wireless standards have been proposed for IoT. Zigbee, which is based
on the IEEE 802.15.4 standard [1], is often referred to as a wireless technology of
choice for home and building automation, smart metering, and IoT in general be-
cause of its simplicity and energy-efficiency. Z-Wave [2] is another technology that
targets similar applications and environments with emphasis on home automation.
Both Zigbee and Z-Wave provide meshing capabilities, which are required by many
IoT applications. Although it does not support meshing, Bluetooth Low Energy
(BLE) is also a candidate technology for IoT. The advantages of BLE are the low
energy consumption and the common presence in smartphone radio stacks. These
technologies, however, do not cover the entire spectrum of IoT devices and applica-
tions. Wi-Fi, which is based on IEEE 802.11 standard [3], dominates the consumer
electronics segment: Any IoT device that needs to connect to smartphones, tablets,
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TVs, set-top boxes, game consoles, and toys would benefit from Wi-Fi connectiv-
ity. Also, some sensors that operate at high sampling rates, such as those used in
seismic monitoring and imaging, may generate large amounts of data that cannot
be transmitted using ZigBee due to its limited throughput, but can easily be trans-
mitted by Wi-Fi. The economy of scale and the possibility of reuse of the existing
Wi-Fi infrastructure offer key cost savings and facilitate faster deployment with
Wi-Fi than with competing technologies. Furtheremore, Wi-Fi has the advantage
of native compatibility with IP, which is the key enabler for IoT: IP eliminates the
need for expensive gateway solutions to connect IoT devices to the Internet. The
feasibility of connecting battery powered sensors to the IoT using commercially
available Wi-Fi chips has been demonstrated in [4]. In [5], the authors share their
experiences of using off-shelf Wi-Fi modules to connect things to the Web of Things.

One of the key challenges for the use of Wi-Fi in IoT objects is its energy con-
sumption, which is relatively high compared to ZigBee. An always-on Wi-Fi inter-
face may quickly drain the battery of a device. Long battery recharge/replacement
cycles are preferred for cost and convenience reasons. For example, a survey has
shown that 51% of electronic toy consumers are concerned about the battery re-
placement costs [6]. There have been some notable improvements in hardware and
many low-power Wi-Fi chips with energy-efficient radio transceivers have appeared
on the market. The 802.11 MAC protocol, however, is inherently energy-hungry.
One of the major sources of unnecessary energy consumption in 802.11 MAC is idle
listening, which consumes energy even when there is no traffic in the network — the
radio must perform idle listening continuously in order to detect arriving packets.
The energy consumption of idle listening in 802.11 is comparable to that of packet
transmission and reception [7]. To alleviate the problem, the 802.11 standard [3]
specifies a Power-Saving Mode (PSM) that allows an idle 802.11 station to tran-
sition to a low-power doze state by switching off its radio transceiver. The role
of 802.11 PSM is similar to that of Radio Duty Cycling (RDC) in 802.15.4. There
are some notable differences: RDC typically operates below MAC, directly on top
of the 802.15.4 PHY layer. It may include information from the MAC layer, in
which case MAC and RDC are cross-optimized as in [8], but it can also be isolated
from MAC. With RDC, a radio can be switched on and then rapidly switched off
after a few milliseconds if no activity is detected on the channel. The 802.11 PSM
is part of the MAC layer management entity. The intervals in which PSM alter-
nates between doze and awake states are typically measured in tens and hundreds
of milliseconds: All 802.11 stations wake up synchronously at the beginning of a
beacon interval, listen for traffic announcements from other stations that have data
packets destined to them, and announce their own data packets (if any) destined to
other stations. If a station does not receive any traffic announcements and it does
not have any buffered packets that need to be transmitted in the current beacon
interval, it returns to the doze state.

The IEEE 802.11 standard specifies the details of PSM for the infrastructure/BSS
mode (Basic Service Set with an access point) and the ad hoc/IBSS mode (Inde-
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pendent Basic Service Set without an access point). Since it has been originally
designed for single-hop communication in the infrastructure mode (from the access
point to a station and vice versa), the PSM performs poorly in the ad hoc mode,
especially in multi-hop networks [9, 10, 11]. When a data frame is forwarded over
multiple hops, the PSM may significantly increase the delivery delay because only
the next-hop station is notified about the pending frame via traffic announcements,
while the stations on subsequent hops may remain in the doze state. Therefore, in
each beacon interval the frame is forwarded over a single hop and has to be buffered
before being forwarded further. Depending on the number of hops, the end-to-end
delay may be long enough to affect time-sensitive applications. Another problem
of PSM is that a station is occasionally forced to stay awake even though it has
no frames to transmit or receive. The reason to stay awake is to respond to probe
requests of devices that are actively scanning the medium when attempting to dis-
cover and join networks. For example, if there are two stations in an 802.11 ad
hoc network, at least one of them would have to remain awake at any time, which
limits the sleep time to at most 50%. Hence, the 802.11 PSM is not suitable for
low-energy low-latency multi-hop communication, which is a common requirement
for the IoT.

In this paper, we address the problem of increased frame delays due to PSM in
multi-hop ad hoc networks. We propose a mechanism that wakes up downstream
stations so that data frames can be forwarded over multiple hops in a single beacon
interval. This is achieved by instructing each station along the path to forward the
traffic announcement to its downstream neighbor. The proposed mechanism signifi-
cantly reduces the end-to-end delay, especially for bursty traffic where intermediate
stations may move to the doze state between two consecutive traffic bursts. We also
question the 802.11 standard requirement for a station to stay awake to respond to
probe requests. We describe a mechanism that enables actively scanning stations
to discover an ad hoc network in which no station is required to stay awake for
the entire duration of the beacon interval. The proposed mechanisms enhances the
standard PSM to what we call Multi-Hop PSM (MH-PSM). MH-PSM does not pre-
vents stations to inter-operate with those that employ standard PSM since it does
not alter the state machine, the frame formats, and other important protocol mech-
anisms. MH-PSM is also software-implementable: It does not require modifications
to the parts of the 802.11 MAC protocol that are usually implemented on-chip,
such as the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
medium access protocol. We implemented MH-PSM as a part of our WLAN driver
for the Contiki operating system [12]. The paper provides a practical demonstration
that, with few simple modifications, WLAN ad hoc mode may become a compelling
technology for some IoT applications. A concise version of this paper was published
in [13].

The rest of the paper is organized as follows: Section 2 provides an overview of
the standard 802.11 PSM. In Section 3, we describe MH-PSM and discuss deploy-
ment and standard compatibility issues. The performance of MH-PSM is evaluated
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Figure 2: From [13]. The 802.11 PSM divides time into beacon intervals.

in Section 4 using simulations, and in Section 5, we describe our testbed implemen-
tation of MH-PSM and experimental results. Section 6 gives a brief overview of
related work. Finally, Section 7 concludes the paper.

2 Power-saving mode for 802.11 ad hoc networks

In the standard 802.11 PSM for ad hoc/IBSS networks, time is divided into periods
called beacon intervals. Each station wakes up at the beginning of a beacon interval
and starts a back-off procedure in an attempt to transmit a beacon. If a station
receives a beacon from another station before its back-off timer expires, it cancels
the pending beacon transmission. The Timing Synchronization Function (TSF) uses
the time-stamped beacons to synchronize clocks among stations, to ensure that all
stations wake up at the same time. Following the beacon exchange, each station
stays awake for an ATIM window interval as shown in Fig. 2. During the ATIM
window, stations announce pending data frames to their neighbors using unicast
Announcement Traffic Indication Messages (ATIMs). ATIMs are sent using the
802.11 Distributed Coordination Function (DCF) that operates with a CSMA/CA
channel access procedure. A station that receives an ATIM should respond with
an ACK. Successful exchange of ATIM-ACK packets between two stations implies
that they can now exchange any pending data frames and thus both should stay
awake until the next beacon interval. Stations that neither send nor receive any
ATIM frame during the ATIM window will move to the doze state for the rest of
the beacon interval. After the end of an ATIM window, all stations that remain
awake will follow the normal DCF procedure to transmit and receive data frames.

The described PSM protocol has many drawbacks: It uses DCF, which may
waste scarce battery resources and bandwidth due to frame collisions and increase
the frame delay due to back-offs. A station that has pending data frames must
estimate if the receiving station is using PSM. ATIMs should be sent only to stations
that are using PSM. Stations that are not in PSM will not respond with an ACK,
which will trigger undesirable re-transmissions. The standard however does not
specify how to estimate if a station is using PSM or not. When a station successfully
transmits or receives an ATIM frame during an ATIM window, it must stay awake
during the entire rest of the beacon interval. At low loads, this approach results
in a higher energy consumption than necessary. Another shortcoming is that all
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Figure 3: From [13]. Multi-hop forwarding in standard 802.11 PSM may cause a
delay of several beacon intervals.

stations in an IBSS must use the same fixed ATIM window size, which is set at
the time when the IBSS is created, as well as identical beacon intervals. Since
the ATIM window size critically affects the throughput and energy consumption,
the fixed ATIM window does not perform well in all situations, as shown in [14].
Some of these drawbacks have been addressed in previous work, which are discussed
in Section 6. This paper, however, addresses the problem of end-to-end delay on
multi-hop paths, as described in the following.

Consider a typical multi-hop scenario where station A needs to send a single-
frame message to station D using intermediate stations B and C as relays (Fig. 3).
In the first beacon interval, station A announces the data frame to station B using
an ATIM. Station B acknowledges the ATIM an remains awake so that it can receive
the data in the period that follows the ATIM window. Assume that station C has
not received any traffic announcements and, therefore, it enters the doze state.
Since station B is not able to forward the frame to station C in the current beacon
interval, it has to wait for the start of the next beacon interval to send an ATIM
to station C. Following a successful ATIM-ACK exchange, the frame is forwarded
to C. Station D will receive the frame in the third beacon interval. The resulting
increased end-to-end delay may considerably affect applications with strict latency
constraints, which is undesirable. Therefore, enabling PSM in multi-hop ad hoc
networks must be combined with effective mechanisms for mitigating its effect on
the resulting packet delays.

3 Enhanced 802.11 PSM for Multi-Hop Commu-
nication

In the scenario described above, the data frame sent by A must be buffered at B
before it is relayed to C in the following beacon interval. This could be avoided if
there was a way for B to, upon receiving the ATIM from A, send an early ATIM
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to C and D to inform them about the pending data frame at A. This is what our
low-latency multi-hop PSM (MH-PSM) aims to achieve.

Before introducing MH-PSM, we describe the format of ATIM frames. An ATIM
frame contains a MAC header, whose structure is common to all management frames
as shown in Fig. 4. The frame body of an ATIM is empty. The header includes
three address fields: Address 1 contains the MAC address of the ATIM receiver.
Address 2 contains the MAC address of the ATIM sender. Address 3 may contain
different information depending on the type of the management frame and network
mode (BSS, IBSS, or mesh). The Address 3 field of ATIM frames contains the
BSSID (BSS identifier) of the IBSS. In case of group-addressed (i.e., broadcast)
ATIMs, the BSSID is used to verify that the frame originated from a station in the
IBSS of which the receiving station is a member. In case of individually addressed
(i.e., unicast) ATIMs, the BSSID is not used at the receiver [3].

3.1 Proposed Extension: Multi-Hop PSM (MH-PSM)

We propose that, in order to inform all stations along the path to D about the
pending data frame, the station A writes the MAC address of D into the Address 3
field of the ATIM frame sent to B. Methods to resolve the MAC address of D from its
IP address are discussed later in this section. Upon receiving the ATIM, B inspects
the Address 3 field to derive the final destination of the data frame announced by
that ATIM. It retrieves the MAC address of D from the Address 3 field, resolves it
to the IP address of D, and consults the routing table to find out that C is the next
hop on the path to D. Then B creates an ATIM frame for C with the MAC address
of D inside the Address 3 field. When C receives the ATIM from B, it uses the same
procedure to create an ATIM for D. In this way, a chain of ATIM transmissions
is created along the multi-hop path to wake up all relays and the destination of
the data frame. Following the end of the ATIM window, the data frame can be
forwarded end-to-end in the current beacon interval since all stations on the path
are in the awake state. The procedure is illustrated in Fig. 5. The ATIM chain may
not reach the end destination: It may terminate at the end of the ATIM window or
upon reaching a station that cannot resolve the MAC address of the destination. In
that case, the data frame will be forwarded as far as the furthest station that has

Frame
Control

Duration Address 1 Address 2 Address 3
Sequence

Control
FCS

Figure 4: From [13]. Structure of the ATIM frame. The Address 3 field can be used
for the MAC address of the end destination.
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Figure 5: From [13]. The proposed multi-hop forwarding mechanism allows data
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received the ATIM. Nevertheless, MH-PSM may significantly decrease the end-to-
end delay in lightly-loaded multi-hop networks because, unlike with the standard
PSM, data frames are forwarded over multiple hops in a single beacon interval.

3.2 Address 3 Resolution

The sending station A needs to write the MAC address of the destination D into
the Address 3 field of the ATIM sent to B. Therefore, A needs to resolve the MAC
address of D from its IP address. Since the paper targets Internet of Things (IoT)
and smart toy communication scenarios, we assume that IPv6 is used. The IPv6
protocol suite includes the Neighbor Discovery (ND) protocol [15], which provides
address resolution, next-hop determination, and duplicate address detection. Ad-
dress resolution enables stations to determine MAC addresses of their neighbors
given only their IP addresses. The neighbor solicitation messages, which are used
for address resolution, are sent via multicast. The ND protocol is not designed with
multi-hop ad hoc networks in mind. A node in such network is able to broadcast to
other nodes within its radio range, but the communication is non-transitive. There-
fore, a wireless ad hoc network is a Non-Broadcast Multi-Access (NBMA) structure
with generally no network-wide multicast capabilities. The network solicitation
messages are not forwarded in an IBSS. Hence, station A is only able to resolve
MAC addresses of its immediate neighbors, but not of D, which is multiple hops
away. There are several proposals to extend the capabilities of the ND protocol to
multi-hop ad hoc networks [16] and 6LoWPAN (IPv6 over Low power Wireless Per-
sonal Area Networks [17]) in particular [18]. These proposals include mechanisms
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for multi-hop Duplicate Address Detection (DAD), which allows a station to check
the uniqueness of an IP address in an n-hop neighborhood. The multi-hop DAD
can also be used for multi-hop address resolution: Station A may initiate multi-hop
DAD for the IP address of D. Upon receiving a DAD request, D will respond with
a DAD confirmation message that contains its MAC address. It this way, A can
resolve the MAC address of D based on its IP address. Each station maintains
a cache of resolved addresses, which limits the need for network-wide multi-hop
address resolution.

3.3 Backward-Compatibility

Backward-compatibility with the standard PSM for IBSS is ensured since MH-PSM
does not violate neither the frame formats nor the protocol operations. Stations
that implement standard PSM will not check the Address 3 field of received ATIMs
and, therefore, the chain of ATIMs will terminate at such stations. This dimin-
ishes some of the delay improvements, but otherwise does not prevent or impair
communication.

To better understand how standard PSM and MH-PSM may coexist, consider
a scenario where station A sends data to station E using B, C, and D as interme-
diate relays. Assume that all the stations except station B use MH-PSM. When B
receives an ATIM from A (with E’s MAC address in the Address 3 field), it will
not immediately create an ATIM for C: Instead, it will wait for the data packet
to arrive and then, at the beginning of the next beacon interval, it will create an
ATIM for C. This ATIM will not contain E’s address in its Address 3 field because
B runs standard PSM. Once it receives the ATIM, the MH-PSM-enabled station C
(and all subsequent downstream stations) will fall back to the standard PSM.

3.4 Support for Network-Wide Broadcasts

As pointed out earlier in this section, in case of broadcast ATIMs, the Address 3
field must contain the BSSID, which is used by the receiver to verify that the
frame originated from a station in the IBSS of which the receiver is a member.
Therefore, it cannot be used to store the MAC address of the final destination.
Broadcast ATIMs are mostly used to announce link-local broadcasts (e.g., Node
Solicitation messages of the Node Discovery protocol). Hence, they do not need to
be forwarded over multiple hops since the announced broadcast is aimed at stations
that are one hop away from the sender. However, when network-wide broadcasts
(e.g., Route Request messages of the AODV routing protocol) are announced, the
broadcast ATIMs should be forwarded over multiple hops to ensure that all stations
in the network remain awake following the end of the ATIM window. To support
such broadcasts in MH-PSM, there should be a field in the ATIM header (other
than Address 3 field) that a sender could use to declare if the broadcast ATIM is
announcing a link-local or a network-wide broadcast. A possible solution would
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be to amend the 802.11 standard to include a new management frame subtype
Multihop ATIM (analogous to Multihop Action frames [3]), which would contain
an additional field in the header for this purpose.

3.5 Sleep On Beacon Transmission (SoBT)

We propose an additional mechanism to increase the doze time of idle stations. The
802.11 standard mandates that a station that wins the back-off at the beginning
of a beacon interval and subsequently transmits a beacon, should remain awake
until the end of the beacon interval. This is considered necessary to ensure that the
IBSS to which that station belongs can be discovered by the devices that employ
active scanning. Most portable battery-powered devices, such as smartphones and
tablets, use active instead of passive scanning to conserve energy. Unlike with
passive scanning, when the scanning device spends substantial time listening for
incoming beacons, with active scanning the device may wake up for a short period
of time, transmit Probe Requests on different channels, and return to the doze state.
At least one station in the IBSS must reply with a Probe Response containing the
SSID of the IBSS, which can then be added to the list of known SSIDs. If all
stations in an IBSS move to the doze state, there is no one to reply to the Probe
Requests and, therefore, the IBSS might be invisible to the devices that employ
active scanning. The probability that a station transmits a beacon increases as
the number of neighbors decreases. Hence, in a small and/or sparse IBSS network,
a station might win beacon back-offs in many consecutive beacon intervals and is
forced to stay awake even though there is no traffic in the network. In the following,
we discuss how this requirement of the 802.11 standard can be relaxed in practice.

A device that employs active scanning should repeat the following procedure for
each channel to be scanned (see [3] for a full description):

(a) Wait until the ProbeDelay time has expired or a PHYRxStart.indication has
been received.

(b) Perform the basic DCF access procedure and send Probe Request to the broad-
cast destination address.

(c) Clear and start a ProbeTimer.

(d) If PHY-CCA.indication (busy) has not been detected before the ProbeTimer
reaches MinChannelTime, then scan the next channel, else when ProbeTimer
reaches MaxChannelTime, process all received Probe Responses.

Hence, ProbeDelay is the delay prior to transmitting a Probe Request on a new
channel, MinChannelTime and MaxChannelTime are, respectively, the minimum
and the maximum amount of time spent on that channel after the Probe Request
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transmission. Assuming that PHYRxStart.indication has not been received in a),
the device spends at least the time interval

Tmin = ProbeDelay + tTX(ProbeRequest) +MinChannelT ime

on each channel. If the device receives a beacon during the interval Tmin, the SSID
advertised in the beacon will be added to the list of discovered SSIDs. Since Wi-Fi
channels in the 2.4 GHz band are overlapping (which is not the case in the 5 GHz
band), the minimum time that the scanning device spends listening on a channel
may be even longer: While being tuned to channel i, a Wi-Fi device is able to
receive transmissions on channels [i − k, i + k], where typically k = 2 or k = 3
in the 2.4 GHz band. Therefore, assuming that neighboring channels are scanned
consecutively, the minimum total time during which the scanning device is able to
receive transmissions on channel i is T tot

min = Tmin×(2k+1) for k+1 ≤ i ≤ 13−k. For
channels that are at the edges of the 2.4 GHz band (e.g., i = 1 and i = 13), T tot

min =
Tmin×(k+1). In case of non-overlapping channels in the 5 GHz band, T tot

min = Tmin.
Instead of staying awake for the entire beacon interval to respond to Probe Requests,
an idle station in PSM mode could wake up periodically and transmit what we
call intra-beacons. As long as the intra-beacon interval TIB is shorter than T tot

min

the scanning device will be able to receive an intra-beacon and discover the IBSS.
Hence, unlike regular beacons that are sent at the beginning of each beacon interval
(if the station wins the back-off), intra-beacons are transmitted during the beacon
interval. The station generates intra-beacons only in beacon intervals in which it
i) wins the beacon back-off and subsequently transmits a regular beacon and ii)
does not receive or send any ATIM frames during the ATIM window. If the beacon
interval is shorter than T tot

min there is no need to transmit intra-beacons because
regular beacons are frequent enough to be received by the scanning device. We
call this intra-beaconing mechanism SoBT (Sleep On Beacon Transmission). SoBT
increases the doze time at the expense of additional (intra-)beacon transmissions.
We define the SoBT overhead as the average number of intra-beacons transmitted
per beacon interval. It is calculated as dTBI/TIB − 1e × PSoBT , where TBI is the
beacon interval, TIB is the intra-beacon interval, and PSoBT is the probability that
intra-beacons are transmitted in a beacon interval (i.e., i) and ii) are fullfilled).

We investigated the feasibility of the proposed SoBT mechanism for cases where
scanning devices run Android and Apple iOS, which today cover more than 90%
of the current smartphone market, according to [19]. An Android phone may
either perform soft-scanning or hard-scanning depending on whether its Wi-Fi
driver implements active scanning or not. If active scanning is not supported by
the driver, the phone performs so-called soft-scanning, which is implemented in
/net/mac80211/scan.c of the Android kernel. Otherwise, the hard-scanning is per-
formed. With soft-scanning, an Android phone always waits for ProbeDelay before
it sends a Probe Request on a new channel regardless if PHYRxStart.indication has
been received or not. This is a departure from the step a) of the standard scanning
procedure.
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The ProbeDelay and MinChannelTime are 30 ms each. Therefore, an Android
phone spends Tmin = 60 ms on each channel, assuming that the time to trans-
mit a Probe Request tTX(ProbeRequest) is negligible. The described soft-scanning
procedure is however rarely used because Wi-Fi drivers of most Android phones
implement hard-scanning. We examined the hard-scanning procedure of a Sam-
sung Galaxy S3 phone, which is equipped with a Broadcom BCM4334 Wi-Fi chip.
The Broadcom’s bcmdhd driver for Android does not wait for ProbeDelay before
sending a Probe Request on a new channel (step a) of the standard scanning
procedure). When the phone is not connected to any Wi-Fi network, the driver
scans for new networks by sending two consecutive Probe Requests and waiting
MinChannelT ime = 40 ms for Probe Responses on each channel. Therefore, the
Samsung Galaxy S3 phone (and any other Android phone whose hard-scanning
is performed by the bcmdhd driver) spends Tmin = 40 ms on each channel, as-
suming that the time to transmit two consecutive Probe Request is negligible.
Apple’s iPhone 5 is equipped with the same Broadcom BCM4334 Wi-Fi chip as
Samsung Galaxy S3, but the details of the active scanning procedure are not read-
ily available since the driver source code is not available. We performed a set of
measurements, which indicate that, when iPhone 5 is not connected to any Wi-
Fi network, it scans for new networks by sending one Probe Request and wait-
ing MinChannelT ime = 20 ms for Probe Responses on each channel. Therefore,
Tmin = 20 ms, assuming that tTX(ProbeRequest) is negligible.

Our tests with both Samsung Galaxy S3 and iPhone 5 have shown that, during
active scanning on channel i of the 2.4 GHz band, the phones are able to receive
beacons on channels [i − 2, i + 2]. Therefore, in an IBSS that uses channel i =
1, it is sufficient to transmit intra-beacons every TIB ≤ 3Tmin. Hence TIB ≤
120 ms and TIB ≤ 60 ms for Samsung Galaxy S3 and iPhone 5, respectively. In
an IBSS that uses channel 3 ≤ i ≤ 11, it is sufficient to transmit intra-beacons
every TIB ≤ 5Tmin. Hence TIB ≤ 200 ms and TIB ≤ 100 ms for Samsung Galaxy
S3 and iPhone 5, respectively. We implemented the SoBT scheme in MH-PSM
as described in Section 5. To test the scheme, we created an IBSS containing a
single dozing station whose inter-beaconing period TIB was set according to the
determined values. Our tests confirmed that a single scanning round is sufficient
to receive an intra-beacon and, therefore, discover the IBSS without forcing the
station to stay awake and continuously listen for Probe Requests 1.

4 Simulation Results

We extensively evaluated MH-PSM and compared its performance to standard PSM
using simulation. The performance is measured in terms of end-to-end delay, doze

1In case of iPhone 5, the reception of an intra-beacon caused the SSID of the IBSS to be added
to the list of known SSIDs. In case of Samsung Galaxy S3, we were able to confirm the reception
of an intra-beacon, but the SSID was not added to the list because Android’s Wi-Fi Manager (as
of version 4.2.2) does not support IBSS mode.
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Table 1: Default simulation parameters.
Parameter Value

Channel model unit disk
IEEE 802.11 PHY mode 6 Mb/s (802.11b)

MAC buffer size 100 frames
Beacon interval TBI 200 ms

Intra-Beacon interval TIB 100 ms (with SoBT)
ATIM window 20 ms

Data frame payload size 500 Bytes
Traffic model Poisson(λ), λ=2.5, 5, 10 frames/s

time ratio, ATIM overhead, and packet delivery ratio, as defined below. The simu-
lation setup and the results are described in the following.

End-to-End Delay is the average time required to forward a data frame from
a source to its destination over multiple hops. It is averaged over all successfully
delivered data frames.

Doze Time Ratio is the percentage of beacon intervals in which a station
enters the doze state and it is closely related with the energy consumption. It is
averaged over all stations that participate in traffic forwarding.

ATIM Overhead is the average number of ATIM frames sent per one success-
fully delivered data frame. The relative ATIM overhead of MH-PSM is the ratio of
ATIM overheads obtained with MH-PSM and standard PSM.

Packet Delivery Ratio is the percentage of data frames that are successfully
delivered to the end destination. A station may drop a data frame if it exceeds the
maximum number of retransmissions.

4.1 Simulation Setup

We implemented and evaluated MH-PSM in Jemula802 [20], which is a Java-based
802.11 protocol simulator. We consider a network of static regularly spaced 802.11
stations that are 50 m apart from each other. We assume a simple unit disk radio
propagation model. We varied the radio range from 50 m to 150 m to influence
the number of hops between source-destination pairs. The beacon interval and
ATIM window size are 200 ms and 20 ms, respectively, unless stated otherwise.
When SoBT is used, intra-beacons are transmitted every 100 ms. The data traffic is
Poisson (exponentially distributed frame interarrival times) with fixed frame sizes
of 500 B. The number of traffic flows and mean frame interarrival time are varied to
control the load in the network. We ensured that the duration of each simulation
run is sufficient to make the variations in time-moving averages insignificant. The
main simulation parameters are summarized in Table 1.
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4.2 Performance Results

Consider first the simple single-flow scenario shown in Fig. 6, where the station on
the far left is sending data frames to the station on the far right over multiple hops.
The radio transmission range is set to 50 m, 100 m, and 150 m in different simulation
runs to create paths with two, three, and six hops, respectively. On average, the
sender is generating one frame every 200 ms (λ = 5 frames/s).

The results for the average end-to-end frame delay are shown in Fig. 7 (top).
As expected, the delay increases with the number of hops. For the standard PSM
it takes almost N beacon intervals to forward a frame over N hops. It may happen
that a frame is forwarded over multiple hops in a single beacon interval: if its next-
hop neighbor is awake, a station may immediately forward the frame to it, without
waiting for the next beacon interval to send a traffic announcement. In a lightly
loaded network, however, it is likely that the next-hop station is in the doze state,
and therefore, the data frame has to be buffered. The results show that the delay is
significantly shorter for MH-PSM. Although it slightly increases with the number
of hops (due to processing in intermediate stations and increasing probability of
collisions/retransmissions caused by hidden stations) the average delay is well below
200 ms, which is the duration of the beacon interval. As the number of hops increases
from two to six, the percentage of frames that are forwarded end-to-end within a
single beacon interval marginally deceases from 100% to 99%, whereas for standard
PSM drops from 92% down to zero.

The average doze time ratio is shown in Fig. 7 (middle). Even without SoBT,
MH-PSM significantly increases the energy efficiency by allowing the stations to
move to the doze state more often than standard PSM. The reason for this is that
MH-PSM prevents excessive buffering of frames in intermediate stations (the num-
ber of frames in the station’s queue is lower), which effectively decreases the traffic
load and the probability of collisions/retransmissions. This shows that MH-PSM
provides both shorter delay and lower energy consumption, which is a major im-
provement over standard PSM whose parametric adjustments/optimizations may
only trade shorter delay for higher energy consumption and vice versa. When com-
bined with SoBT, the doze time of MH-PSM surges to 60%. Hence, allowing stations

Figure 6: Simulated network topology with a single flow. The transmission range
is set to 50 m, 100 m, and 150 m in different simulation runs to produce paths with
two, three, and six hops, respectively.
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Figure 7: End-to-end delay, doze time ratio, and ATIM overhead for different num-
ber of hops.

to sleep after beacon transmissions is very effective in reducing idle listening.2 Stan-
dard PSM forces a station to stay awake after beacon transmission, which can be a
major source of energy waste, especially in sparse and in networks with many hid-
den terminals. Consider our two-hop scenario (A→B→C): If all the stations could
hear each others transmissions, the probability that an arbitrary station transmits
a beacon would be 1/3. However, since A and C are hidden from each other, they
may both transmit beacons if their backoff timers expire before the backoff timer of
B. Moreover, if beacon transmissions from A and C overlap in time, they will collide
at B and, therefore, B will also transmit a beacon. Hence, without SoBT, there
is a high probability that a station has to remain awake because it transmitted a
beacon. The SoBT overhead (defined in Section 3.5) is dTBI/TIB − 1e × PSoBT ,
where dTBI/TIB − 1e = 1 and the percentage of beacon intervals in which SoBT is
invoked PSoBT is given by the difference between doze time ratios with and without
SoBT. Hence, for 2, 3, and 6 hops the SoBT overheads are, respectively, 0.39, 0.34,
and 0.33 intra-beacons per beacon interval.

In Fig. 7 (bottom), we show the ATIM overhead for both PSM schemes. While
the overhead for MH-PSM is comparable to that of standard PSM for the path with
two hops, it is almost 30% lower in the six-hop case. To understand the reasons for
this, consider a five-hop path from station A to station E via B, C, and D, as shown
in Fig. 8. Assume that one frame is buffered at station A and one at station C. In the
best-case scenario, it will take four beacon intervals and six ATIMs to deliver both
frames to the destination under standard PSM. With MH-PSM however, it will only
one beacon interval and four ATIMs to achieve the same because it creates a wave of
ATIMs that flushes all buffered frames to the destination, as shown in Fig. 9. There
are however scenarios where the ATIM overhead of MH-PSM is higher than that
of the standard PSM even for paths with many hops. In standard PSM, a station
sends a single ATIM to its neighbor to announce all data frames that it intends
to forward to this neighbor, regardless of their end destinations. In MH-PSM, the

2Note however, that during SoBT intervals, stations may need to wake up and transmit intra-
beacons, which diminishes some of the energy saving gain.
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Figure 8: From [13]. Standard PSM requires four Beacon Intervals (BIs) and six
ATIMs to deliver the frames buffered at A and C.

Figure 9: From [13]. MH-PSM requires only one Beacon Interval (BI) and five
ATIMs to deliver the frames buffered at A and C.

station may send multiple ATIMs with different Address 3 fields to the neighbor
if the pending data frames have different end destinations. For example, consider
two flows whose eight-hop paths contain a common subset or relays, as shown in
Fig. 10. In MH-PSM, the common relays may need to forward two ATIMs with
different Address 3 fields to their next-hop neighbors in the same ATIM window.
This is not the case in standard PSM, where only one ATIM is sent. The results
in Fig. 11 show that the ATIM overhead of MH-PSM is 20% higher. MH-PSM
outperforms standard PSM in all other respects: The end-to-end delay is close to
tenfold shorter, the doze time ratio is slightly higher, and the packet delivery ratio
is significantly improved. Therefore, the relative ATIM overhead of MH-PSM had
no bearing to the key performance metrics.

We next investigate the impact of beacon interval on the performance of PSM
and MH-PSM. The results presented so far assume a beacon interval of 200 ms.
We changed the interval to 100 ms and 400 ms and repeated the simulations for the
basic scenario shown in Fig. 6 with the transmission range of 50 m (i.e. six hops).
The average frame interarrival time is 200 ms regardless of the beacon interval.
The results are summarized in Table 2. As expected, the frame delay for standard
PSM increases linearly with the beacon interval because the time that frames stay
buffered in the intermediate nodes is proportional to the beacon interval. The delay
for MH-PSM also increases, but remains much shorter than for standard PSM. The
increase is due to the fact that MH-PSM does not guarantee that all frames will
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Figure 10: An example of two flows whose paths partially overlap.

Figure 11: Performance of standard PSM and MH-PSM for the scenario with two
flows whose paths partially overlap (Fig. 10).

be delivered end-to-end in a single beacon interval: Some frames may be buffered
along the path as in the case of standard PSM. The doze time decreases for both
schemes because the number of idle (with no data traffic) beacon intervals decreases
as they become longer. Another observation is that the packet delivery ratio of
standard PSM decreases significantly for the longer beacon interval (from close to
100% for 100 ms to 93% for 400 ms), while for MH-PSM it remains close to 100%:
For standard PSM, the number of buffered frames along the path increases with the
duration of the beacon interval, which effectively increases the traffic load in the
network and the probability of collisions. With MH-PSM, most frames are delivered
end-to-end without buffering in intermediate nodes.

In the last two simulation scenarios, we vary the average frame Interarrival
Time (IAT) and the number of flows in the network to evaluate the impact of traffic
load on the performance of MH-PSM. The beacon interval is 200 ms regardless of
the traffic load.

The results presented so far assume an average frame IAT of 200 ms. We changed
the average IAT to 10, 50, 100, and 400 ms and repeated the simulations for the
basic scenario shown in Fig. 6 with the transmission range of 50 m (i.e. six hops).
The results are summarized in Table 3. The frame delay decreases for higher load
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Table 2: Performance of standard PSM and MH-PSM for different beacon intervals.
Frame interarrival times is 200 ms. Frames are forwarded over six hops.

BI (ms)
Delay (ms) Doze time (%) ATIM overhead

PSM MH-PSM PSM MH-PSM PSM MH-PSM
100 532 51 22 31+41 4.55 3.02
200 1047 99 13 26+33 3.42 2.45
400 2044 179 8 23+30 2.35 1.45

up to a certain point ( IAT ≥ 50 ms). This is because the doze time decreases
with the traffic load, meaning that frames are more likely to be forwarded without
buffering. In case of MH-PSM, nearly 100% of frames are transmitted end-to-end
within a single beacon interval for IAT ≥ 50 ms. The differences in frame delays for
different IATs are due to the initial hold-up at the sender: For the average IAT of
400 ms (twice the beacon interval), it is more likely that the sender is in the doze
state when a frame is passed to the 802.11 MAC; therefore, the frame has to wait for
the next beacon interval to be transmitted. For average IAT of 100 ms (two frames
per beacon interval), many frames are transmitted immediately since the sender
is likely to be awake due to earlier packer arrivals. For IAT = 10 ms (20 frames
per beacon interval), congestion sets in, frames start colliding, and we observe an
increase in the delay due to retransmissions. The ATIM overhead decreases for
shorter IATs (higher loads) because it is unnecessary to send ATIMs for some of
the frames: Only one ATIM is sent per hop per beacon interval regardless of the
number of frames that need to be transmitted in that beacon interval.

We next consider the scenarios with multiple (i.e., 2, 4, and 8) intersecting flows
in a grid topology shown in Fig.12. The transmission range is 50 m; therefore, frames
are forwarded over six hops. The results in Table 4 show that the performance
deteriorates with the number of flows. Transmissions of intersecting nodes are
especially prone to collisions because they are surrounded by four active/forwarding
stations that do not hear each other’s transmissions (hidden stations). The impact of
collisions on the performances of standard PSM and MH-PSM is somewhat different:

Table 3: Performance of standard PSM and MH-PSM for different frame interarrival
times. Beacon interval is 200 ms. Frames are forwarded over six hops.

IAT (ms)
Delay (ms) Doze time (%) ATIM overhead

PSM MH-PSM PSM MH-PSM PSM MH-PSM
10 999 117 7 11+17 0.32 0.25
50 997 78 9 19+27 1.44 0.81
100 1010 82 9 23+30 2.36 1.49
200 1047 99 13 26+33 3.42 2.45
400 1094 102 22 31+40 4.65 3.55
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Figure 12: Simulated network topology with 2, 4, and 8 symmetric flows.

While the frame delay for standard PSM remains unaffected by the number of flows,
the delay for MH-PSM increases considerably (yet still remains relatively low).
The reason is that collisions in intersecting nodes may disrupt the cut-through
forwarding of data frames in MH-PSM. In the single-flow scenario, 100% of frames
are forwarded end-to-end in a single beacon interval. For the eight-flow scenario,
this percentage drops to 63%. The additional hold-up in intersecting nodes does
not affect the frame delay in standard PSM so significantly because most frames
are anyway forwarded only one hop per beacon interval.

In addition to the regular grid topology, we considered (quasi-)random topologies
where 40 nodes are uniformly placed in an 300×300 m area, as shown in Fig. 13. The
simulation setup is similar as in the previous scenario: we consider eight intersecting
six-hop flows. To control the number of hops, we repeatedly generated random
topologies and randomly selected eight source-destination pairs until paths between
all eight pairs were six hops long. We collected results from 10 simulation runs.
The mean value and the coefficient of variation CoV (standard deviation divided by
the mean) over different runs for the delay, doze time ratio, and PDR are shown in
Table 5. The results show longer delay and lower doze time ratio compared to the
regular grid topology (last row of Table 4) for both standard PSM and MH-PSM.
This is because regular grid scenario provides better spatial separation between the

Table 4: Performance of standard PSM and MH-PSM for different numbers of
flows. The transmission range is 50 m – frames are forwarded over six hops. Beacon
interval (BI) and frame interarrival time (IAT) are 200 ms.

Num. flows
Delay (ms) Doze time (%) PDR (%)

PSM MH-PSM PSM MH-PSM PSM MH-PSM
1 1047 99 14 26+33 99 100
2 1048 171 14 18+28 83 93
4 1055 253 14 15+28 81 90
8 1063 285 12 14+20 77 86
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Figure 13: One of the simulated random network topologies with eight six-hop
flows.

flows and, therefore, lower number of collision. MH-PSM, however, still performs
significantly better than the standard PSM.

Table 5: Performance of standard PSM and MH-PSM for a random topology. The
transmission range is 50 m – frames are forwarded over six hops. Beacon interval
(BI) and frame interarrival time (IAT) are 200 ms.

Delay (ms) Doze time (%) PDR (%)
Mean CoV Mean CoV Mean CoV

PSM 1250 0.062 9 0.074 77 0.039
MH-PSM 526 0.072 11+18 0.173+0.048 85 0.050

Finally, we compare the performances of MH-PSM and Link-Indexed Statistical
traffic Predictor (LISP), another modification of the standard 802.11 PSM, on the
topology shown in Fig. 12 (eight symmetric flows). LISP [21] reduces the end-to-
end delay on multihop paths by enabling nodes to establish the correlation between
overheard acknowledgments to ATIM frames (ATIM ACKs) and incoming traffic.
The correlation is established when a node overhears an ATIM ACK packet ad-
dressed for some other node in a beacon interval (BI), and receives an ATIM in
the subsequent BI. Next time when it overhears an ATIM ACK packet again, it
takes that as an indication of incoming traffic and herein stays awake through the
BI. The node then transmits a pseudo-ATIM ACK to notify the upstream node of
its willingness to stay awake in the current BI and to notify downstream nodes to
stay awake as well. On the other hand, if such a conjecture is incorrect and the
node receives no packets in the BI, then it erases the recent history and learns from
scratch. The basic mechanism may not operate correctly in the presence of multiple
connections, as connections may share nodes or links on their routes, and a node
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Table 6: Performance comparison of LISP and MH-PSM. The simulated topology is
shown in Fig. 12 (eight symmetric flows). The transmission range is 50 m – frames
are forwarded over six hops. Beacon interval (BI) and frame interarrival time (IAT)
are 200 ms.

Num. flows
Delay (ms) Doze time (%) PDR (%)

LISP MH-PSM LISP MH-PSM LISP MH-PSM
8 299 285 7+19 14+20 88 86

may receive/forward packets from different connections in an interleaving fashion.
As a result, the correlation between traffic indicators and arrivals of packets for one
connection has to be differentiated from those for other connections. A method by
which LISP accomplishes this task is described in [21].

The results shown in Table 6 show that there is no significant difference in the
end-to-end delays of MH-PSM and LISP. This is because the flows are stationary
(long-lived), so the nodes that are participating in frame relaying soon learn to
correlate ATIM ACKs with incoming traffic. The doze time ratio is higher with
MH-PSM because correlation establishment/learning in LISP is not perfect: it may
happen that nodes stay awake for no reason. The ATIM overhead of LISP is lower
than that of MH-PSM because the relaying nodes stop sending ATIMs once they
establish the correlation: only the pseudo-ATIM ACKs are transmitted.

5 Experimental Results

MH-PSM is software-implementable: The parsing and generation of ATIM frames
are not time-critical operations that have to be implemented on-chip. This enables
the integration of MH-PSM into an 802.11 device driver without modifications of
the lower-level MAC operations. Our experimental MH-PSM implementation is
described in the following.

5.1 MH-PSM Implementation

We implemented the proposed MH-PSM as a part of our WLAN driver module for
Contiki [12], an open source operating system for the Internet of Things. The used
hardware platform consists of an Arduino Due board (Cortex-M3 MCU, 96 KB of
SRAM) connected via USB interface to an 802.11n transceiver based on Atheros
AR9001U-2NX chipset [22], as shown in Fig. 14. The AR9001U-2NX chipset con-
tains an AR9170 MAC/baseband and an AR9104 (dual-band 2Ö2) radio chip.
Atheros has released the firmware of AR9170 as open source, which enables us
to write the Contiki WLAN driver. The open source firmware provides a direct
access to the lower-MAC program that runs on the AR9170 chip, which greatly
simplifies driver debugging. The used Contiki driver is partially based on the



208

Figure 14: HW/SW platform for MH-PSM evaluation consists of an Arduino Due
board and an Atheros 802.11n transceiver. We ported Contiki OS to the Arduino
Due and implemented WLAN and USB drivers for the Atheros transceiver.

otus driver [23], a depreciated Linux driver for Atheros devices (replaced by the
carl9170 driver as of kernel version 2.6). It is fully integrated with the Contiki’s
uIP protocol stack for TCP/IP and supports standard PSM and MH-PSM in ad
hoc mode. Our goal was not only to validate MH-PSM, but to build a flexible
open-source platform for experimentation with 802.11 MAC Layer Management
Entity (MLME) algorithms (power saving, beaconing, time synchronization, scan-
ning, association, authentication) for future IoT-ready WLAN-enabled embedded
devices.3 While there is abundance of low-power WLAN modules for embedded
devices (e.g., Roving Networks RN-131C, Gainspan GS2100M, Texas Instruments
CC3000, Broadcom BCM4390, etc.) and WLAN enabled development boards for
IoT applications (WiSmart EC32Lxx, RTX41xx, Spark Core, Flyport WLAN, etc.)
they are not suitable for experimentation with 802.11 MAC layer management al-
gorithms: Typically, their proprietary network stack implementations are provided
as binary firmwares and only high-level communication and configuration APIs are
disclosed. Moreover, their stack implementations often do not support IBSS mode
and/or IPv6.

5.2 Experimental Setup

Our experimental setup consists of up to seven WLAN nodes lined up 10 m apart
from each other4 in a quiet alley at the back of an office building compound, as

3Lower-MAC functions with strict timing constraints, such as DCF, are implemented on the
AR9170 chip.

4We could not place the nodes further apart due to space constraints.
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Figure 15: Experimental setup: Seven WLAN nodes lined up 10 m apart from
each other. The experiments were run overnight to minimize the interference from
surrounding access points. An LCD screen is connected to each node to monitor
the status.

shown in Fig. 15. The experiments were run overnight, when the interference from
the neighboring access points was negligible: WLAN spectrum monitors picked
up only control and management traffic from other networks at those hours. The
transmit power of the nodes was reduced to the minimum of 0 dBm, which resulted
in the transmission range of roughly 30 m. Therefore, nodes that were up to three
hops away could still observe and decode each others transmissions. Hence, there
were fewer hidden terminals in the experimental setup than in the simulation setup.
The goal was not to exactly replicate the simulation results, but to compare MH-
PSM and standard PSM in the described experimental setup.

Figure 16: End-to-end delay, doze time ratio, and ATIM overhead for different
number of hops.
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5.3 Performance Results

We first consider scenarios with two, three, and six hops that are created by plac-
ing, respectively, three, four, and seven nodes in a line. The beacon interval and
ATIM window size were set to 200 ms and 20 ms. We used the same Poisson traffic
generator with fixed packet sizes as in the simulations. The sender (rightmost node
in Fig. 15) generated on average one frame every 200 ms (λ = 5 frames per second).
For each scenario we performed multiple (typically three to five) runs with 300
packets each. The results were then averaged over those runs.

The average end-to-end delay, doze time ratio, and ATIM overhead are shown
in Fig. 16. The results follow the pattern seen in the simulation (Fig. 7). For the
standard PSM it takes almost N beacon intervals to forward a frame over N hops,
while for the MH-PSM the delay is much shorter. The absolute delays are somewhat
higher then in the simulations because packet generation and processing/parsing
in intermediate nodes takes some time. Our hardware/software platform can be
further optimized for this task. The doze time ratio is still significantly higher
with MH-PSM than with standard PSM. The absolute values are higher than in
the simulations (Fig. 7) because nodes have more neighbors (e.g., node A is able
to hear not only B, but also C). This reduces the number of beacon intervals in
which a node wins the beacon transmission and, therefore, the number of beacon
intervals in which the node must stay awake. Hence, the doze time ratio is higher
in the experiments. For the same reason, the gain of SoBT is lower, but it is still
significant. The SoBT overheads for 2, 3, and 6 hops are, respectively, 0.14, 0.15,
and 0.15 intra-beacons per beacon interval. The ATIM overhead of MH-PSM is
comparable to that of standard PSM in the two-hop and almost 30% lower in the
six-hop case, as predicted by the simulations. The absolute values are lower than
in simulation because fewer ATIMs had to be retransmitted due to collisions (there
were fewer hidden terminals in the experiments than in the simulations).

We also measured the performance of PSM and MH-PSM for different beacon
intervals. The results presented so far assume the beacon interval of 200 ms. We
changed the interval to 100 ms and 400 ms and repeated the measurements for the
six-hop scenario. The average frame interarrival time is 200 ms regardless of the
beacon interval. The results are summarized in Table 7. All our observations
based on the simulation results (Table 7 apply to measurement results too: While
the frame delay increases linearly with the beacon interval for the standard PSM, it
increases moderately and remains comparably short for the MH-PSM. Even without
SoBT, MH-PSM outperforms standard PSM in terms of the doze time ratio. As
expected, the doze time decreases with the length of beacon intervals because fewer
intervals are idle. The improvement in terms of ATIM overhead is also significant.

Finally, we varied the average frame Interarrival Time (IAT) 1/λ to evaluate the
impact of traffic load in the six-hop scenario. The beacon interval is 200 ms regard-
less of the IAT. The results are summarized in Table 8. With MH-PSM, close to
80% of frames are transmitted end-to-end within a single beacon interval regardless
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Table 7: Performance of standard PSM and MH-PSM for different beacon intervals.
Frame interarrival times is 200 ms. Frames are forwarded over six hops.

BI (ms)
Delay (ms) Doze time (%) ATIM overhead

PSM MH-PSM PSM MH-PSM PSM MH-PSM
100 586 125 40 52+17 4.11 2.78
200 1249 173 25 42+15 3.03 2.18
400 2234 281 19 41+15 2.12 1.23

of the traffic load (0% with standard PSM). The slight increase in the delay for
longer IATs is due to the initial hold-up at the sender, as discussed in Section 4.2.
As expected, the doze time increases when the traffic load decreases (i.e., for longer
IATs). There is a mismatch between experimental and simulation results (in terms
of absolute values, due to different network setups), but trends, relative perfor-
mance, and conclusions are the same: MH-PSM significantly outperforms standard
PSM in all scenarios considered in this paper.

6 Related Work

The power saving mode (PSM) of 802.11 has been thoroughly investigated in the
past. However, vast majority of proposed improvements targets infrastructure
(BSS) networks, where data is transmitted over single hop between an AP and
a station [24, 25, 26, 27, 28, 29, 30]. The IEEE 802.11ah proposal [31] defines a
low power medium access method that optimizes standard 802.11 PSM for battery-
powered devices used in smart metering and machine-to-machine communication.
However, the optimization also focuses on infrastructure networks.

A number of solutions have also been proposed to optimize the PSM in IBSS
(ad-hoc) networks. Some of them focus on minimizing the duration of idle listening
by introducing mechanisms for early transition to the doze state [9, 10, 11, 32, 33].
For example, in [9, 10], ATIM announcements are modified to include the number
of pending frames to allow the receiving station to move to the doze state immedi-
ately after it receives the last announced frame without waiting for the end of the

Table 8: Performance of standard PSM and MH-PSM for different frame interarrival
times. Beacon interval is 200 ms. Frames are forwarded over six hops.

IAT (ms)
Delay (ms) Doze time (%) ATIM overhead

PSM MH-PSM PSM MH-PSM PSM MH-PSM
100 1226 166 17 37+14 1.89 1.32
200 1249 173 25 42+15 3.03 2.18
400 1285 185 40 52+17 4.11 3.03
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beacon interval. In [10], the early transition to the doze state is combined with the
dynamic adjustment of the ATIM window duration based on the traffic conditions
in the IBSS in order to transit to sleep earlier in case of low network traffic. Con-
sidering a low-traffic scenario, [32] proposes a scheme where the absence of traffic is
declared by transmitting a delayed beacon, so that stations can skip idle listening
during the ATIM window. Similarly, [33] proposes a scheme where transmitting
stations announce their intention of sending ATIM frames in a short time period
at the beginning of the beacon interval. Stations that do not send or receive any
announcements do not have to stay awake for the entire ATIM window. The prob-
lem of long end-to-end latency on multi-hop paths is not addressed or evaluated in
these works. Entering the doze state as soon as all frames announced by the ATIM
are received may increase the latency for frames that arrive to the sender after the
ATIM transmission because they cannot be delivered in the current beacon interval.
Hence, the multi-hop end-to-end latency may be even worse than that of the stan-
dard 802.11 PSM. In [34, 35], the authors propose a topology-aware power-saving
algorithm based on the overhearing of the ATIM frames transmitted by the neigh-
bors. By extracting the source addresses from the received ATIM acknowledgments,
a station can defer from transmitting ATIMs to stations known to remain awake
after the expiration of the ATIM window. This scheme can efficiently decrease
the required ATIM window size in a fully-connected IEEE 802.11 mesh network,
but it is less effective in multi-hop IBSS network topologies. In [36], a modified
802.11 PSM is proposed, where beaconing nodes act as a centralized schedulers
that sends out explicit transmission ordering information to the neighbors. The
beacon transmission is moved to the end of the ATIM window. The transmission
schedule is computed upon receiving the ATIM announcements information in the
ATIM window. The schedule is then announced via beacon transmission at the
end of the ATIM window. The objective is to avoid channel contention and max-
imize the dozing time. In [37], the authors propose an improvement to standard
802.11 PSM, which addresses the problems of clock synchronization and neighbor
discovery. The objective is to ensure robust performance in the presence of clock
drift, and to provide up-to-date neighbor information to upper layer protocols (e.g.,
routing). The problem of long end-to-end latency on multi-hop paths is not ad-
dressed or evaluated. The schemes described in [36, 37] do not address the latency
problem on multi-hop links. In [38], an optimization of the standard 802.11 PSM
called SIMPA is proposed. SIMPA decouples power state transitions from beacon
intervals: Depending on the traffic, a station may transit to the doze state inside a
beacon interval or extent its active state beyond one beacon interval. Every station
maintains packet arrival history to decide if the active state should be prolonged.
In the case of a high traffic load, stations will stay awake, which expedites the
data delivery on multi-hop paths. Therefore, even though SIMPA is not design to
minimize latency, it may provide shorter latency than standard 802.11 if the traf-
fic intensity is high enough. MH-PSM does not maintain any traffic history and
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provides reduced end-to-end latency regardless of the traffic load, even for sporadic
data frames.

The problem of end-to-end latency latency in multi-hop 802.11 networks has
been explicitly addressed in several works. In [39], the authors propose an on-
demand power management algorithm, which is not specifically targeting 802.11
MAC, but it is applicable and demonstrated on an example of an 802.11 ad hoc
network. The scheme integrates routing information from on-demand ad hoc routing
protocols and power management capabilities from the MAC layer. It judiciously
enables and disables the power saving mode of specific nodes depending on the
traffic in the network. The scheme can be used to reduce the latency on multi
hop paths by disabling the PSM of the stations along the path. The scheme may
provide better performance than MH-PSM, but it is less practical because, unlike
MH-PSM, it requires the knowledge of traffic patterns and cross-layer coordination.
In [11], the latency is reduced by organizing the IBSS network hierarchically, so
that always-awake master stations create a backbone that relays the multi-hop
traffic between PSM-enabled slave stations. MH-PSM does not rely on any sort
of always-awake mesh routers, we consider an ad hoc network where every station
is in power save mode. A low-latency routing algorithm that forwards packets via
stations that are known to be awake in the current beacon interval is presented
in [40]. Our solution operates at the MAC layer, it is independent of routing, and
does not require any a priori knowledge of the power state of the stations. A history-
based prediction mechanism by which a station infers if it needs to stay awake to
forward incoming packets is described in [41]. In case of sporadic packet bursts
and short-lived flows, wrong prediction may cause the station to stay awake for
no reason. In [42], the authors propose a fast flooding algorithm that propagates
ATIMs to allow broadcast packets to travel multiple hops in a single beacon interval.
Conceptually, this is similar to what we propose with MH-PSM. However, unlike
MH-PSM, the algorithm in [42] is applicable to broadcast transmissions only.

7 Conclusions

The Internet of Things will connect not only Zigbee-enabled devices, such as indus-
trial sensors, but also consumer electronics that typically uses Wi-Fi for network
connectivity. The power saving mechanisms of the IEEE 802.11 MAC have to
be optimized to enable low-cost battery-powered devices to connect to each other
ad hoc, without infrastructure support. In this paper, we proposed MH-PSM, an
extension of the standard IEEE 802.11 PSM that enables low-latency ad hoc com-
munication over multiple hops. MH-PSM also increases the doze time ratio of the
devices compared to the standard PSM to further extend their battery lifetime.
MH-PSM is software implementable since it does not require changes to the lower
MAC. It is also backward-compatible with the standard PSM, which guarantees
interoperability with legacy devices. We implementing the scheme on an embedded
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open source platform and demonstrated its effectiveness using both simulations and
experiments. We are planning to investigate the interaction of MH-PSM with upper
layer protocols (i.e., RPL/loadNG routing in particular) to further optimize the IoT
communication protocol stack.
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Abstract

We address the problem of RPL tree formation in self-organized, multi-

hop, wireless sensor networks, where resource-constrained nodes may indepen-

dently select their routing paths that maximize their performance. We study

the result of the tree formation applying a non-cooperative game-theoretic

model, and show that multiple objectives may lead to unstable Nash graphs

with unwanted tra�c cycling. To ensure stability we propose an extension of

the node's strategy space, denoted as selective routing, that e�ciently elimi-

nates non-acyclic formations from the set of Nash equilibria, while the result-

ing routing decisions comply with standard RPL.

1 Introduction

Wireless networks formed by low power wireless devices are expected to be key en-
ablers for the emerging Internet of Things. Apart from the limitation on the energy
resources, this area of networking is also characterized by a high heterogeneity of
connected devices, of the provided networked services and of the physical environ-
ment. Therefore, to be successful, the designed networking technologies have to
support this heterogeneity. Considering suitable routing protocols, IETF proposes
RPL, a Routing Protocol for Low-power and Lossy Networks [1], that supports
heterogeneity through the high �exibility in de�ning routing objectives. In general,
these routing objectives need to re�ect the requirements of the networking scenario
itself, including the long uninterrupted operation and low operational cost. This
translates to low, and balanced energy consumption, such that the individual net-
work nodes, as well as the multihop transmission paths to the RPL root have long
lifetime. Moreover, routing objectives have to support the application requirements,
in terms of end-to-end quality of service, such as delay or packet loss.

In this paper we consider the scenario, where network nodes are sel�sh, that
is, they aim at maximizing their individual performance by independently selecting
their routing paths. Our objective is to characterize the topologies that emerge
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in Nash Equilibria (NE), for a large class of generic utility functions that re�ect
multiple performance objectives. We show that the NE topologies are trees, if
only end-to-end performance objectives, like delay or packet loss are considered.
However, cycles may emerge, if the utilities depend even on the forwarded tra�c,
like in the case of path lifetime. Therefore, we propose routing over an extended
strategy space, allowing some level of routing di�erentiation according to the tra�c
source, and prove that in this case the Nash equilibria are stable tree topologies
without cycles.

The remainder of the paper is organized as follows. Section 2 introduces the
networking scenario and the related analytic models for tra�c routing. Section 3
introduces the network formation game, followed by a topology stability analysis
under non-congestive and congestive node utility functions. Section 4 presents our
main contribution, studying the topology stability under an extended routing strat-
egy space for the network nodes. We present the related work on tree formation
games in Section 5 and conclude the paper in Section 6.

2 Networking Scenario and Model

2.1 WSN Topology and Network Stack

We consider a �nite set of stationary WSN nodes deployed, arbitrarily, in the area of
the network, utilizing a single-channel wireless link layer. The nodes aim at trans-
mitting data tra�c to a gateway node over multi-hop paths, employing IPv6 and
RPL [1]. RPL is a well-known routing protocol, particularly designed for multi-hop,
low-power and lossy wireless networks. RPL forms directed acyclic graphs (DAGs)
� often denoted as trees for simplicity � rooted at a gateway node. The root node
initiates the RPL tree by broadcasting the DAG information object (DIO) message,
including among others DAG identi�ers, node rank and routing metrics. Upon re-
ceiving DIO messages, network nodes select their parent or parent set according to
some utility function, select a rank value that is larger than that of the parents,
update and re-broadcast the DIO message. RPL preserves the acyclic structure, by
forbidding upward tra�c forwarding to a node with larger rank. If such a transmis-
sion is attempted, RPL initiates a local or a global repair process where the topology
is re-organized. To avoid the costly repair procedures the tree construction process
should lead to stable RPL tree formations, that is, formations that do not contain
cycles.

We denote by V the �nite set of WSN nodes, with |V| <∞. The matrix E ∈ R×R
denotes the edge matrix of the network topology, where the element Evi,vj denotes
the cost of the link between nodes vi and vj . The link cost is a decreasing function
of the link quality, with an in�nite cost for non-existing links. The wireless network
is, therefore, represented by a graph G(V, E). Let v0 /∈ V denote the gateway node.
In the context of RPL networks, v0 will be the root of the RPL instance, and all
nodes in V need to establish routing paths towards v0. The network is assumed to
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have symmetric links, i.e. Evi,vj = Evj ,vi ,∀vi, vj ∈ V ∪{v0} = Ṽ. We denote by Nvi

the set of neighbors of node vi, i.e. Nvi(E) = {uk ∈ Ṽ : Evi,uk
<∞}. We de�ne the

path between two nodes in Ṽ as follows:

De�nition 1. A path Pvi,vj (E) of length K between nodes vi, vj ∈ Ṽ, i 6= j is
de�ned as a sequence of nodes (uk), k = 1, . . .K such that u1 = vi, uK = vj , uk ∈
Pvi,vj (E), ∀k and it holds: Euk,uk+1

<∞, ∀k = 1, . . . ,K − 1.

We assume the existence of a path, Pvi,vj between any nodes vi, vj ∈ Ṽ. In
other words, the network topology is connected. In general there may exist multiple
paths between a pair of nodes, and a path may include cycles, i.e. nodes visited
more than one times. Let Pvi,vj (E) denote the set of all possible paths between
nodes vi, vj . We simply denote the path as Pvi(E) when vj = v0. For node vi, a
RPL path, PLvi ∈ Pvi(E) is a path that is used to forward tra�c to the root node,
v0. For each node uk in the path, the next node, uk+1 is an RPL parent node, while
uk is denoted as child. Obviously, uk+1 ∈ Nuk

. We denote by Πvi(PLvi) the parent
of node vi for that particular RPL path PLvi . We denote by PLvi(E) � or, simply,
PLvi � the set of all paths of node vi. Then, the set of parents for vi is given as

Πvi =
⋃

PLvi
∈PLvi

Πvi(PLvi). (1)

Considering RPL path PLvi , we de�ne the set of extended parents of node vi as
the union of nodes that belong to PLvi , and denote the set by Π̃vi(PLvi).

De�nition 2. [Extended parents on a RPL path] The set of indirect parents of node
vi considering path PLvi :

Π̃vi(PLvi) = {uk : uk ∈ PLvi} . (2)

The total set of extended parents for node vi is derived, considering all RPL
paths:

Π̃vi =
⋃

PLvi
∈PLvi

Π̃vi(PLvi). (3)

A cycle in the RPL network is formed if at least two network nodes include each
other in the set of extended parents:

De�nition 3. [Cycle formation] A cycle is formed in a RPL network if there exist
two nodes, vi, vj for which it holds: vj ∈ Π̃vi , vi ∈ Π̃vj .

2.2 Tra�c routing

Let L , {Lv1
, . . . , LvV } denote the vector of tra�c injected by the nodes in the

network. Each node vi forwards incoming tra�c from its children set and the
locally generated workload, Lvi

, exclusively via its parents set.
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We model the result of the parent selection process at the wireless nodes by
de�ning a node's routing vector Rvi = {Rvi(uk)}, uk ∈ Ṽ \ {vi}, where the element
Rvi(uk) ∈ [0, 1] denotes the portion of incoming or locally generated tra�c that is
forwarded towards the root via node uk. Clearly, Rvi(uk) = 0, ∀uk /∈ Πvi . Rvi

is, additionally, stochastic, that is
∑

uk∈Ṽ\{vi}Rvi(uk) = 1. R , [Rvi ] denotes the

routing matrix of the RPL network. We de�ne LT
vi , the tra�c workload of node vi

recursively as the sum of all incoming and locally injected tra�c:

LT
vi = Lvi +

∑

vi∈Πuk

Ruk
(vi)L

T
uk
, ∀uk ∈ V (4)

While the edge matrix, E , is an input for out network, the routing matrix is the
outcome of nodes' decisions on their routing vectors.

2.3 Node objectives

A node vi decides on its routing vector, Rvi , based on a set of objectives related to
its individual performance. We characterise the node objectives as follows. First,
the nodes aim at maximizing the quality of service (QoS), when forwarding their
own tra�c to the gateway. QoS is evaluated over end-to-end performance metrics,
such as packet delay, delivery rate, throughput or reliability. Second, under limited
energy resources, nodes aim at maximizing their lifetime, i.e at extending for as
long as possible their ability to deliver their tra�c to the gateway node. Therefore,
nodes aim at minimizing their own energy consumption as well as that of their
extended parents set. Due to the �rst objective, a node vi has an incentive of
joining the RPL tree at a level as close as possible to the root node. Such decision,
however, may result in vi having a large sub-tree with high volumes of tra�c to
be forwarded, clearly contradicting the second objective. In addition, to balance
the energy consumption of the nodes in the extended parent set, nodes have an
incentive to select less congested paths.

As the outcome of routing decisions according to these multiple objectives is
non-trivial, we model the node interactions as non-cooperative strategic game, and
evaluate the resulting Nash topologies.

3 RPL Tree Formation Game

3.1 RPL tree formation assumptions

We make the following assumptions that a�ect the possible actions of the players,
that is, the WSN nodes. First, the nodes are able to select a set of preferred
parent nodes among their direct neighbors. Most RPL implementations restrict
nodes to select a single preferred parent, however, such restriction is not enforced
by the standard, and multiple parents are bene�cial for balancing the network load.
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Supported by the standard, we assume, here, that nodes have no control over their
children set, and nodes are forced to advertise the RPL network to their neighbors.

3.2 Non-cooperative routing tree formation

In the tree formation game the WSN nodes aim at maximizing their network perfor-
mance by optimizing their parent selection policy, considering the possible parent
selection decisions of the rest of the nodes in the network. The action of a node
vi is a routing vector instance, Rvi , and an action pro�le of the game is a vector
{Rv1

, . . . ,RvV }. The preference relations of node vi over all pro�les are determined
by the node's utility, Uvi , that quantitatively evaluates the node's performance as
function of the action pro�le and the input parameters, such as the network topol-
ogy, G(V, E), and the tra�c workload vector, L. We assume that each node has a
prior knowledge of the input parameters and the utility functions [2]. As a result of
the above assumption, we model the parent selection game among the nodes in V
as a non-cooperative, strategic game with perfect information [3]. The formulation
of the tree formation game is given below.

De�nition 4 (Tree formation game). The considered RPL tree formation game is
a �nite-player game with the following properties:

1. V is the number of players

2. Qvi , Rvi , i = 1, 2, . . . V are the actions (or strategies) of the players, i.e.
the routing vectors. (Qvi , Q−vi) denotes a strategy pro�le for the tree for-
mation game.

3. Uvi(Qvi , Q−vi),∀vi describes the player utility, that is, in general, a function
of the routing vectors of all nodes. RPL nodes prefer an action pro�le that
minimizes their utility function, given the actions of the other nodes.

The outcome of the game in Def. 4 is the set of routing vectors. Even though,
according to the RPL protocol the nodes need to play their actions � join the
tree and advertise their routes and the RPL instance, � sequentially, the selected
game model is valid, due to the assumption of full prior knowledge of all input
parameters. In practice, the nodes will acquire the input parameter values, play
the game, and then join the RPL network, as soon as they receive DIO messages
from their intended parents. We apply the notion of Nash Equilibrium (NE) as a
traditional game theoretic tool of analyzing the behavior of the network nodes and
of predicting the outcome of the game.

As nodes can select multiple parents, that is, can follow a mixed strategy, we
have the following fundamental property.

Property 1. The game de�ned in Def. 4 has at least one mixed strategy NE due
to Nash's Existence Theorem.
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3.3 Congestive and Non-congestive utility functions

Consider the generic utility function Uvi
(Qvi

, Q−vi) , ∀vi ∈ V for the tree forma-
tion game in Def. 4. Uvi may jointly re�ect multiple (and possibly counter-acting)
performance objectives of the network nodes, e.g. end-to-end delay, throughput,
reliability, energy consumption, or lifetime. Therefore, Uvi is, in general, a combi-
nation, H, of a set ofW sub-utility functions f1

vi , . . . f
W
vi , each one re�ecting a single

objective,

Uvi (Qvi , Q−vi) ,
, H

(
f1
vi (Qvi , Q−vi) , . . . , f

W
vi ((Qvi , Q−vi))

)
.

(5)

(5) allows for arbitrary sub-utility combinations, with the natural requirement that
the aggregate utility function, Uvi , is strictly monotonic with each of the sub-
utilities, that is:

H (Qvi , Q−vi) < H
(
Q´

vi , Q
´
−vi
)
, if

fw (Qvi , Q−vi) ≤ fwvi
(
Q´

vi , Q
´
−vi
)
,∀w = 1, . . . ,W,

and ∃w, s.t. fwvi (Qvi , Q−vi) < fwvi
(
Q´

vi , Q
´
−vi
)
.

(6)

In other words, a node's utility function decreases, if at least one sub-utility function
has a strictly decreased value, while the remaining sub-utilities do not increase
their values. We consider, as a convention, all sub-utilities of the root node to
be zero. Under mixed strategy pro�le the node's sub-utility can be expressed as
a combination of the sub-utilities evaluated over each RPL path PLvi ∈ PLvi ,
PLvi (Qvi , Q−vi),

fwvi (Qvi , Q−vi) = F
(
fwvi (PLvi,1) , . . . , fwvi

(
PLvi,|PLvi

|
))

. (7)

Additionally, we have,

Uvi(PLvi) = H(f1
vi(PLvi), . . . , f

W
vi

(PLvi)). (8)

3.3.1 Non-congestive functions

Utility functions that re�ect traditional end-to-end network performance metrics �
such as packet delivery delay, throughput or loss rate � depend on the length of
the formed paths towards the root node, while they do not incorporate any notion
of network resource (such as energy) sharing. We denote, here, such functions as
non-congestive.

De�nition 5 (Non-congestive function). A sub-utility function fwvi (Qvi , Q−vi
) is

a non-congestive function, when it satis�es ∀(Qvi , Q−vi) and ∀vi ∈ V the following
two conditions:

1. fwvi (Qvi , Q−vi) = fwvi

(
Q́vi , Q́−vi

)
, ∀Q́−vi 6= Q−vi , if
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Quk
= Q́uk

, ∀uk ∈ {vi} ∪ Π̃vi , and

2. fwvi(PLvi) > fwvi(PLuk
), if PLvi ⊃ PLuk

. (9)

In other words, a node retains its utility under a di�erent strategy pro�le, when it
does not alter its own strategy, while no node in his extended parents set modi�es its
strategy pro�le. In addition, non-congestive functions are strictly monotonic, that
is, intermediate nodes on a path to root exhibit strictly lower utility values compared
to the starting node of the path. We restrict the analysis to linear combinations of
the sub-utilities over each formed path. Thus (7) becomes:

fwvi (Qvi , Q−vi) =

=
∑

PLvi
∈PLvi(Qvi

,Q−vi)
q (PLvi) f

w
vi (PLvi) ,

(10)

where q (PLvi) denotes the percentage of tra�c forwarded via path PLvi , and∑
PLvi

∈PLvi(Qvi
,Q−vi)

q (PLvi) = 1. Non-congestive utility functions include, but

are not limited to, additive functions, where it, additionally, holds:

fwvi
(PLvi) = fwuk

(PLuk
) + fwvi(Evi,uk

), uk = Πvi(PLvi). (11)

In the following we show a characteristic property of the tree formation game
when the node utility function comprises solely of non-congestive sub-utilities.

Property 2. Consider the game of Def. 4 where the node utilities satisfy (6), while
the sub-utilities, fw are non-congestive (Def. 5). Any NE of this game corresponds
to an acyclic graph.

Proof. Assume that there exist a NE which is not an acyclic graph. Then, there exist
at least two nodes, u1, u2 which participate in a cycle formation. This is equivalent
to u1, u2 having each other in their extended parents set: u1 ∈ Π̃u2 , u2 ∈ Π̃u1 .
Denote by PLu1 , PLu2 the alternative RPL paths of u1, u2 to root, respectively.
For the alternative paths it holds, u1 /∈ PLu2

, u2 /∈ PLu1
. Assume, without loss of

generality, that
Uu1

(PLu1
) ≤ Uu2

(PLu2
) , (12)

where Uuk
(PLuk

) = H
(
f1(PLuk

), . . . , fW (PLuk
))
)
. For the utility of u1 the fol-

lowing inequality holds, due to (9), and as a result of tra�c circulation between u1

and u2:
Uu1

> q(PLu1
)Uu1

(PLu1
) + (1− q(PLu1

))Uu1
(PLu2

) ,

Due to (12), it holds
Uu1

> Uu1
(PLu1

),

so u1 bene�ts by deviating all tra�c via its own path, instead of the cycle, violating
the assumption of a NE.
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We show a second property of the RPL tree formation game that holds for
additive, non-congestive utility functions. We start by giving the following de�nition
for the minimum-distance tree.

De�nition 6. A Minimum-Distance RPL Tree (mDRT) is an RPL DAG where
parents are selected so that each node has a minimum utility, U , towards the root,
where U is a function H of non-congestive sub-utilities. We denote the minimum

distance path-to-root of node vi as PL
(min)
vi .

The following property holds for non-congestive functions that, additionally,
satisfy (11).

Property 3. Consider the game of Def. 4 where the node utilities satisfy (6), while
the node sub-utilities are non-congestive (Def. 5) and additive (11). Any NE of this
game corresponds to an acyclic tree formation, which results in a minimum distance
RPL tree.

Proof. Consider a NE of the tree formation game. Due to Property 2 the NE is an
acyclic graph. Assume that the NE does not correspond to a minimum distance
RPL tree. Then there exists a path PLuk

∈ PLuk
(Quk

, Q−uk
), for some node uk,

that is not a minimum distance path, i.e. PLuk
6= PL

(min)
uk , while all paths of the

parents of uk are minimum distance paths, that is:

PLuj = PL
(min)
uj , ∀PLuj ∈ PLuj ,

∀uj ∈
⋃

PLuk
∈PLuk

Πuk
(PLuk

).

Since we have assumed a NE, PLuk
has been selected as a best response:

PLuk
=

= {PLuk
: Uuk

(PLuk
) ≤ Uuk

(PL
′
uk

),∀PL′uk
∈ PLuk

}
= {PLuk

: H(f1
uk

(PLuk
), . . . , fWuk

(PLuk
) ≤

≤ H(f1
uk

(PL
′
uk

), . . . , fWuk
(PL

′
uk

)),∀PL′uk
∈ PLuk

}.

For any sub-utility fw, however, it holds:

fwuk
(PL

′
uk

) = fwΠuk
(PL

′
Πuk

) + fwΠuk
(Luk,Πuk

) < fwΠuk
(PL

′
Πuk

)

where any PL
′
Πuk

is a minimum distance path. Consequently,

fwuk
(PL

′
uk

) ≤ fwuk
(PL

′′
Πuk

)

for any PL
′′
Πuk

that is not a minimum-distance tree. Due to the above inequalities,
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and the monotonic behavior of H, we can write:

PLuk
=

= {PLuk
: Uuk

(PLuk
) ≤ Uuk

(PL
′
uk

),∀PL′uk
∈ PLuk

}
= {PLuk

: H(f1
uk

(PLuk
), . . . , fWuk

(PLuk
) ≤

≤ H(f1
uk

(PL
′′
uk

), . . . , fWuk
(PL

′′
uk

)),∀PL′′uk
∈ PLuk

}.

Consequently, PLuk
is a minimum distance tree.

3.3.2 Congestive node sub-utilities

Utility functions that re�ect a notion of resource sharing (congestion) in the wireless
network are for example a node's communication energy cost, or path lifetime. We
denote such functions as congestive utilities. As the utility values depend on the
amount of tra�c generated or forwarded by the node or the path, the utility may
change if any node sharing a part of a common path towards the RPL root changes
its strategy.

De�nition 7 (Congestive function). A sub-utility function fwvi (Qvi , Q−vi) is a con-
gestive function, when it satis�es ∀vi and ∀(Qvi , Q−vi) the following condition:

fwvi (Qvi , Q−vi) = fwvi
(
Qvi , Q́−vi

)
, Q−vi 6= Q́−vi , if

Quk
= Q́uk

, ∀uk : uk ∈ {{vi} ∪ Π̃vi
} and

∀uk : Π̃uk
∩ Π̃vi 6= ∅∧

∃uj : uj ∈ Π̃uk
∩ Π̃vi ∧ uj /∈

⋂
PLuk

PLuk

(13)

In other words, a node vi retains its utility if i) it itself and its extended parents
do not change their strategies and ii) any other node that has common extend
parent with vi, but this extended parent is not part of all its paths, does not change
its strategy. If all nodes considered in (13) do not change their actions, then due
to load preservation, formally de�ned in in (4), neither vi, nor any of its extended
parents will experience a di�erent tra�c workload value, thus they will retain their
utilities. In the context of this work we focus, exclusively, on congestive sub-utilities,
whose values are increasing functions of the tra�c workload:

fwvi(L
T
vi) > fwvi(L

T
vi
′)if LT

vi > LT
vi
′. (14)

Unfortunately, under congestive sub-utilities, the tree formation game may result
in Nash equilibria that include tra�c cycles. As an example, consider the two nodes,
v1 and v2 (Fig. 1), with paths to the root, PL11 and PL22, respectively. Assume that
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Figure 1: Explanatory �gure illustrating an example of a non-acyclic NE.

the nodes' utility function is a linear combination of a non-congestive sub-utility,
fNC
vi , i = 1, 2, and a congestive one, fCvi , for which it holds:

fCvi
= max
∀PLj∈PLvi

fCvi(PLj), (15)

where fvi(PLj) = maxuk∈PLj
fCuk

(LT
uk

). Consider, �nally, Uvi
= αfNC

vi +βfCvi
, α, β >

0. Consider a possible NE strategy pro�le, under which Rv1(v2) 6= 0, Rv2(v1) 6= 0,
that is, the nodes form a cycle under Def. 3. Consider a symmetric scenario with
fCv1

(PL11) = fCv1
(PL12) = fCv2

(PL21) = fCv2
(PL22) and fNC

v1
(PL11) = fNC

v2
(PL22).

Assuming unit tra�c loads at v1, v2, the outgoing tra�c workload at v1 will be:

LO
v1

=
(1 +Rv2

(v1))

Rv2(v1) + (1−Rv2(v1))/(1−Rv1(v2))
(16)

Any strategy R′v1
(v2) 6= Rv1

(v2) will change the tra�c LO
v1
, LO

v2
, exiting the nodes,

v1, v2. As the sum of the exiting tra�c needs to remain constant, one of these will
increase, increasing the related congestive sub utility due to (14), and consequently,
the congestive utility of v1 due to (15).

If R′v1
(v2) > Rv1

(v2), the non-congestive sub-utility of v1 increases, as v1 for-
wards more tra�c via the cycle. Consequently, Uv1

increases. Instead, if R′v1
(v2) <

Rv1
(v2), the non-cogestive sub-utility of v1 decreases, at maximum by (Rv1

(v2) −
R′v1

(v2)) ·(fNC(PLc)), where f
NC(PLc) is the non-cogestive sub-utility cost due to

circulation of tra�c. Due to (14), fCv1
(PL11) will increase with a rate proportional

to LO
v1

′ − LO
v1
, which increases with a rate proportional to (Rv1

(v2)−R′v1
(v2)):
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LO
v1

′ − LO
v1

=
(1+Rv2

(v1))

Rv2 (v1)+(1−Rv2 (v1))/(1−R′v1
(v2))−

− (1+Rv2
(v1))

Rv2 (v1)+(1−Rv2 (v1))/(1−Rv1 (v2))

>
(Rv1

(v2)−R′v1
(v2))(1+Rv2

(v1))

(1−R′v1
(v2))Rv2 (v1)+(1−Rv2 (v1))

> (Rv1(v2)−R′v1
(v2))(1 +Rv2(v1)),

If β/α is su�ciently large, the increase in fCv1
can not be compensated by the de-

crease in fNC
v1

. As a result, v1 retains its strategy. Applying the same argumentation
for v2 concludes that the considered routing strategy pro�le with tra�c cycling, can
be a NE.

4 Selective RPL-based routing

4.1 Selective routing

We propose a modi�cation of the RPL parent selection and routing policies, with the
aim of avoiding cycle formation in NE. We denote the proposed scheme as selective
routing. Under selective routing the nodes are allowed to route the incoming tra�c
through di�erent RPL paths, that are selected based on the origin of the incoming
tra�c. In terms of modeling, selective routing expands the action space of the nodes
in the tree formation game of Def. 4. Instead of routing vectors, a node's action is
an entire routing array that determines the relaying of the incoming tra�c.

De�nition 8. [Selective routing] The action of node vi is determined by the selective
routing array Rvi ∈ (0, 1)V−1 × (0, 1)V−1, where the array element Rvi(vj , vk) ∈
(0, 1) declares the maximum of the portion of tra�c workload generated at remote
node vj that vi forwards to its parent vk.

For each vi and vj it holds that
∑

vk∈Ṽ\{vi}Rvi(vj , vk) = 1, ∀vj ∈ V. The
above de�nition does not specify whether a routing selection is stochastic or deter-
ministic. In the context of this work, we assume that selective routing is applied
on each arriving (or generated) packet, once the packet �rst arrives at a node. Any
time this packet needs to be forwarded, this is done based on the initial routing
decision.

Consider an arbitrary node vj . Denote by Pj,i ∈ [0, 1] the ratio of the tra�c
workload generated by vj (denoted as Lvj ) that arrives at node vi. Then, the amount
of vj tra�c vi actually relays to vk is calculated as: min{Pj,i,Rvi(vj , vk)}·Lvj

, that
is, it will be lower than the Rvi(vj , vk)Lvj , if Pj,i < Rvi(vj , vk).

We consider a speci�c implementation of selective routing, where node vi cat-
egorizes the handled tra�c into two classes. The �rst class is denoted as the local
tra�c, and includes all tra�c generated at vi, as well as any incoming tra�c that
does not reach the root through any other node that is involved in cycle shared with
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vi. On the contrary, the remote tra�c includes all tra�c generated by nodes in the
cycle, as well as all tra�c reaching the root via any other node in the formed cycle.
Note, that nodes not being part in a cycle have only local tra�c.

4.2 Analysis

The following property gives the main result of this work regarding the e�ciency
of applying selective routing for cycle avoidance under the tree formation game.

Property 4. When nodes are allowed to implement selective routing, as speci�ed
in Def. 8, a Nash Equilibrium tree formation under the game de�ned in Def. 4 is
an acyclic graph.

Proof. We prove this statement by contradiction, eliminating the possibility of a
NE considering all possible cases of cycle formation. Consider a simple topology
with nodes u1, u2 (Fig. 2(a)-2(e)). Based on Def. 4, the actions of u1, u2 are the
tuples (R1,0, R1,2), (R2,0, R2,1), where, R1,2 = Ru1

(u2), R1,0 = 1−R1,2, and R2,1 =
Ru2

(u1), R2,1 = 1−R2,0 and Ru1
(.), Ru2

(.) are the parent selection vector elements
de�ned in Section 2.2.

Consider a NE tree formation, under which a set of two nodes u1, u2 form a
cycle, that is, R1,2, R2,1 6= 0. Due to the assumption of a connected network, at
least one of u1, u2 has a valid RPL path to the root. We distinguish among the
di�erent cases regarding the paths of nodes u1, u2 to the root.
Case 1: Node u1 with path to the root. Consider the case where only node u1 has a
path to the root node (Fig. 2(a)). In this case, u1 bene�ts from setting R1,1 = 0,
as any non-congestive metric strictly decreases, due to (9), while, additionally, all
nodes in Π̃u1

retain the values of any congestive sub-utility, as the tra�c workload
does not change, and u1 strictly decreases its own congestive utility by avoiding
tra�c circulation.
Case 2: Nodes u1, u2 with a common path to root. Consider, now, the case where
u1, u2 share the same path to the root node, that is, Π̃u1 = Π̃u2 . (Fig. 2(b)).
Assume, without loss of generality, that any non-congestive utility, evaluated over
the path PLu1

� that includes the Eu1,u3
link � has a lower value, than if it is

evaluated over PLu2
. Then, u1 prefers setting R1,0 = 1, as it decreases any non-

congestive utility function. Similarly to Case 1, any node in the common path
retains its congestive sub-utility values when R1,0 = 1, as (13) is satis�ed, while u1

achieves a lower metric for any congestive sub-utility due to cycle avoidance that
decreases the incoming workload.
Case 3: nodes u1, u2 with the same bottleneck node to root. Consider the scenario
in Fig. 2(c), where u1, u2 have di�erent paths to the root, with a common bottleneck
node ub that forwards all their tra�c to the root, and for which it holds: LT

ub
≥

LT
ul
,∀ul ∈ PLu1 ∪ PLu2 . We assume, without loss of generality that node u1 has a

better or similar path to root with respect to any non-congestive utility function,
compared to u2. (We will consider this assumption in all the remaining cases of
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Figure 2: Explanatory diagrams for the di�erent scenarios consider in the proof of
Property 4.
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this proof.) Then u1 bene�ts from setting R1,0 = 1. First, it strictly decreases its
non-congestive utilities. Second, it decreases even its total load, LT

u1
, while it keeps

the congestive sub-utilities over the paths PLu1 and PLu2 the same, since the total
load LT

ub
remains una�ected.

Case 4: nodes u1, u2 with direct connection to root. This scenario (Fig. 2(d)) is
similar to Case 2, as any congestive sub-utility is determined by the total tra�c
workload at the nodes u1, u2. Therefore, node u1 bene�ts from setting R1,0 = 1,
decreasing both its non-congesting utilities, as well as its handled tra�c workload
by avoiding tra�c circulation between u1, u2.
Case 5: nodes u1, u2 with disjoint paths to root. This is the case of the example
in Section 3.3.2, that is, cycles may exist if selective routing is not applied. In this
case (Fig. 2(e)), in contrast to Case 4, the congestive sub-utilities depend on the
tra�c forwarded via each of the disjoint paths to the root. Denote by L̂u1

, L̂u2
the

local tra�c workload at nodes u1, u2, as de�ned in Section 4.1:

L̂u1
= Lu1

+
∑

u1∈Πuj
,uj 6=u2

Ruj
(u1)LT

uj

L̂u2
= Lu2

+
∑

u2∈Πuj
,uj 6=u1

Ruj
(u2)LT

uj

Then, in the absence of selective routing, the amount of tra�c exiting the cycle
from each path to the root is calculated as:

LΠ̃u1
=
R1,0L̂u1 +R1,0L̂u2(1−R2,0)

1− (1−R1,0)(1−R2,0)
(17)

LΠ̃u2
=
R2,0L̂u2

+R2,0L̂u1
(1−R1,0)

1− (1−R1,0)(1−R2,0)
(18)

Consider that u1 implements selective routing for its local and remote tra�c. R11,0

denotes the portion of local tra�c that can be sent directly over the u1 path to root,
while R12,0 represents the ratio of remote tra�c that can be relayed over the same
path. Formally, the action pro�le of u1 is the vector of elements, Ru1

(uj , uk), j, k 6=
1, where:

Ru1
(uj , uk)=





R11,0, uk = Πu1
(PLu1

),∀uj outside the cycle,
R12,0, uk = Πu1

(PLu1
),∀uj inside the cycle,

1−R11,0, uk = u2, ∀uj outside the cycle,
1−R12,0, uk = u2, ∀uj inside the cycle,

0, otherwise

Then, (17), (18) become:

L
(S)

Π̃u1

= R11,0L̂u1
+ min{1−R2,0,R12,0}L̂u2

, (19)
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L
(S)

Π̃u2

= (1−R11,0)L̂u1
+ (1−min{1−R2,0,R12,0}) L̂u2

, (20)

where (.)(S) indicates the load after selective routing is implemented. In (17), we
have:

R1,0L̂u2
(1−R2,0)

1−(1−R1,0)(1−R2,0) =
R1,0L̂u2

(1−R2,0)

R1,0+R2,0−R1,0R2,0
=

=
L̂u2

(1−R2,0)

1+R2,0/R1,0−R2,0
< L̂u2

(1−R2,0).
(21)

Consequently, selecting R11,0 =
R1,0

1+(1−R1,0)(1−R2,0) , and, R12,0 =
(1−R2,0)

1+R2,0/R1,0−R2,0
,

we get from (19),
L

(S)

Π̃u1

= LΠ̃u1
. (22)

However, as a result of (21), and since R11,0 ∈ (0, 1) and min{1 − R2,0,R12,0} ∈
(0, 1), there is always a pair of values R11,0 > 1

1+R2,0/R1,0−R2,0
, and R12,0 <

(1−R2,0)
1+R2,0/R1,0−R2,0

, such that (22) holds. Such action pro�le will decrease any non-

congestive sub-utility for node u1, as it deviates a higher portion of local tra�c
through a better path to the root node. Moreover, any congestive sub-utility func-
tion, evaluated over the u1 path to root, will retain its value because of (22). Finally,
the tra�c workload arriving at node u1 from the cycle (node u2) will be:

LC
u1

=
L̂u1

(1−R11,0)

1− (1−R2,0)
+
L̂u2

(1−min{1−R2,0,R12,0})
1− (1−R2,0)

. (23)

Clearly, due to (19), it holds LC
u1

= const., for any pair of R11,0,R12,0, for which
(22) is satis�ed. As a result, u1 bene�ts from implementing selective routing. As
R11,0,R12,0 ∈ [0, 1], we concentrate on two boundary cases below.
Case 5.1: R12,0 = 0.
In this scenario node u1 implements selective routing, but forwards no remote tra�c
through its own path to root. In this case u2 responds better by setting R2,0 = 1,
thus, deviating all its incoming tra�c through its own path to root, which decreases
any non-congestive usb-utility due to (9), while congestive sub-utilities do not in-
crease, as the workload exiting through path PLv2 , LΠ̃u2

is una�ected.

Case 5.2: R11,0 = 1,R12,0 6= 0.
In this case u1 implements selective routing, forwarding both local and remote
tra�c via its path to root. If 1 − R2,0 ≤ R12,0, there is no tra�c cycling. If
1 − R2,0 > R12,0, then a non-zero portion, 1 − R2,0 − R12,0 > 0, of local (u2)
tra�c is subject to cycling between nodes u1, u2, until it is forwarded to root via
PLu2

. Consequently, u2 bene�ts from setting R2,0 = R12,0, strictly decreasing its
non-congestive sub-utilities, due to (9), while the congestive sub-utilities over the
outgoing paths PLu1

, PLu2
are una�ected and the local tra�c workload at node u2

is decreased due to cycle elimination.
Case 6: u1, u2 with disjoint paths to root and u2 implementing selective routing.
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Case 5 shows that the node with a shorter path to root bene�ts from implementing
selective routing, which, eventually leads to cycle elimination. Consider, now, that
u2 implements selective routing with R21,0,R22,0 ∈ (0, 1). If u1 does not implement
selective routing (and R1,2 6= 0), the case is similar to 5.1, 5.2, where u1 bene�ts
from setting R1,2 = 0. Assume, now, that u1 implements selective routing with
R11,0,R12,0 6= 0. If R12,0 ≥ 1 − R22,0 and R21,0 ≥ 1 − R11,0 there is no cycle.
Otherwise, due to the de�nition of selective routing, there exists a non-zero portion
of tra�c that is never forwarded to the root node, which results in in�nite tra�c
workload, thus, an in�nite value of the congestive sub-utilities due to (14). There-
fore, either node bene�ts from breaking the cycle, so as to obtain a �nite value for
its congestive sub-utilities.

The above analysis shows that selective routing, as de�ned in Def 8, eliminates
cycle formation between two nodes in a NE. The last part of the proof will show that
cycles containing additional nodes can not be formed under a NE. We distinguish
between two sub-cases:
Case 7.1: Intermediate nodes in the cycle with no alternative paths to root.
The scenario of intermediate nodes in the cycle (Fig. 2(f)) can be reduced to case
5, where each of u1, u2 groups the incoming tra�c from the intermediate nodes
together with the rest of the remote tra�c they handle.
Case 7.2: Intermediate nodes in the cycle with alternative paths to root. This case
generalizes the scenarios with only two nodes having alternative paths to root.
There always exists a node with a shorter path to the root, with respect to the
non-congestive sub-utilities. If no node implements selective routing, 7.2 can, then,
be reduced to Case 5, where this particular node will deviate and implement selec-
tive routing triggering responses that eliminate the cycle formation. If any node
implements selective routing, 7.2 reduces to Case 6.

4.3 Discussion

Property 4, together with Property 1, ensure that if the parent selection game
can converge, the resulting RPL topology is always a stable, acyclic graph, for the
wide class of monotonic utility functions. Note, however, that Property 4 does not
suggest an algorithmic solution for convergence to the NE strategy pro�le. Game
convergence to Nash trees has been studied, primarily, in the basis of best-response
dynamics [4][5]. It lies, however, outside the scope of our analysis.

While the solution to avoid cycles under generic utility functions is the introduc-
tion of selective routing in the route selection game, the proposed implementation
of the selective routing strategy, distinguishing local and remote tra�c, ensures
that the resulting Nash equilibrium � without cycles and, therefore, without any
remote tra�c at the nodes � does not apply selective routing. As a consequence,
the construction of the RPL DAG with the DIO and DAO messages and the data
routing itself can be performed according to the RPL standard.
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5 Related work

Game theory has been extensively applied in self-organized wireless networks as
a method of studying the e�ect of network nodes acting as independent agents,
towards a broad range of network objectives that involve connectivity and topol-
ogy control [6][7][8], parent admission control [9], routing [10][11][12], and energy-
balanced [4] and secure [13] network design. In routing, or network formation
games, the employed game theoretic models include, predominantly, strategic, non-
cooperative games, [14][13], or repeated games [4][15][5], depending on whether the
wireless nodes converge on a routing matrix after a sequence of game iterations.

Power control with requirements of connectivity is considered in [6]. It shows
that NE exists and can be e�ciently computed, and gives an upper bound on the
total power cost. [15] de�nes a utility function that re�ects both the reward and the
cost of maintaining a network link. Considering a repeated network formation game,
the authors show that Nash equilibia exist, however, �nding the nodes' best response
is in general NP-hard. [5] considers a scenario where link formations are agreed by
parent and child nodes, and shows that convergence into a Nash tree network is
guaranteed under a �nite number of game iterations. A similar scenario is addressed
in [16], where nodes establish links on a contract-based bilateral negotiation basis,
where cost is a function of the relayed tra�c, the negotiated link price and the
eventual lack of connectivity, a parameter that is shown to crucially a�ect the
stability of network formation. [4] discusses network formation games under the
requirement of maximizing the lifetime of the network. The authors propose an
iterative best response-based algorithm that is shown to always converge to a Nash
equilibrium, where local energy cost at the nodes is minimized. Similarly, [17]
focuses in utilites that capture both the reward of connectivity and the cost of
preserving network links and propose an iterative improvement algorithms that
guarantees convergence into Nash trees.

Signi�cant attention is devoted to scenarios concerning self-organized networks
with con�icting node objectives [14][18], showing that pure strategy NE may not
always exist. Mixed strategy Nash equilibria are considered in [20] for bottleneck
games, where the utility of the nodes depends on the amount of tra�c congestion on
their routing paths. [20] shows that the quality of a mixed strategy NE is equal to
the one of the social optimum if nodes select routing paths with minimum number
of bottleneck links.

6 Conclusion

We addressed the problem of RPL tree formation considering sel�sh network nodes.
We formulated the topology formation problem as a non-cooperative strategic game,
where nodes unilaterally select their set of RPL parents, and studied the resulting
Nash equilibria with respect to the characteristic properties of the nodes' utility
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function. We showed that under utility functions, comprised solely of non-congestive
sub-utilities, the resulting Nash topology is an acyclig graph, however, if also con-
gestive sub-utilities are included there may exist Nash topologies that include cycles
among the nodes, leading to unstable RPL instances. Therefore, we proposed an ex-
tension of the nodes' strategy pro�le space, denoted as selective routing, and proved
that it eliminates cycle formations in Nash equilibrium topologies. Moreover, in the
resulting equilibria, selective routing strategies are never preferred by the nodes,
which allows to use the standard RPL DAG construction and data forwarding pro-
tocols.
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