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ABSTRACT2

Non-invasive automatic screening for Alzheimer’s disease has the potential to improve diagnostic3
accuracy while lowering healthcare costs. Previous research has shown that patterns in speech,4
language, gaze, and drawing can help detect early signs of cognitive decline. In this paper,5
we describe a highly multimodal system for unobtrusively capturing data during real clinical6
interviews conducted as part of cognitive assessments for Alzheimer’s disease. The system uses7
nine different sensor devices (smartphones, a tablet, an eye tracker, a microphone array, and8
a wristband) to record interaction data during a specialist’s first clinical interview with a patient,9
and is currently in use at Karolinska University Hospital in Stockholm, Sweden. Furthermore,10
complementary information in the form of brain imaging, psychological tests, speech therapist11
assessment, and clinical meta-data is also available for each patient. We detail our data-collection12
and analysis procedure and present preliminary findings that relate measures extracted from the13
multimodal recordings to clinical assessments and established biomarkers, based on data from 2514
patients gathered thus far. Our findings demonstrate feasibility for our proposed methodology and15
indicate that the collected data can be used to improve clinical assessments of early dementia.16
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1 INTRODUCTION
Alzheimer’s disease and other neurocognitive disorders with a neuropathological origin develop gradually18
over many years before existing criteria of a clinical diagnosis are fulfilled (Blennow et al., 2006; Jack Jr19
et al., 2018). The irreversible nature of these diseases and the long preclinical phase could make effective20
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preventive non-pharmacological approaches especially appropriate, e.g., life-style changes that promote21
brain health and that have no negative side-effects (Kivipelto et al., 2017). Making a correct diagnosis is a22
challenging task, especially in early stages of these diseases (Håkansson et al., 2018); it has been estimated23
that more than 50% of cases of dementia are undetected (Lang et al., 2017), and that the diagnostic accuracy24
is only between 70–90%, compared to what is revealed in post-mortem neuropathology (Villemagne et al.,25
2018; Gauthreaux et al., 2020).26

The diagnostic uncertainty in neurocognitive disorders incurs great human and monetary costs to patients27
and society. For the patient, a false diagnosis inflicts unnecessary trauma with devastating consequences28
on quality of life, in addition to medication with likely negative side-effects. For society, large cost29
savings are possible if only persons with a high probability of neuropathology are referred to more detailed30
examinations. In addition, if an underlying pathology can be correctly identified at an earlier stage, this will31
probably improve the efficacy of pharmacological as well as non-pharmacological counteractive measures.32
It is therefore of high priority to develop diagnostic tools for these diseases that are more sensitive, less33
invasive, more cost-effective, and easier to administer. Approaches based on machine learning have proved34
successful for processing complex information and assisting in medical decisions in several diseases (Hamet35
and Tremblay, 2017). In recent years, such methods have been developed also for neurocognitive disorders36
(Bruun et al., 2019; Lee et al., 2019a; Koikkalainen et al., 2019). Typically, clinical information collected37
through established diagnostic routines is automatically analysed, e.g., via automatic analysis of brain38
images. But machine learning has also been used to combine many types of clinical data to further aid in39
the diagnosis of neurocognitive disorders (Bruun et al., 2019; Koikkalainen et al., 2019; Lee et al., 2019a).40
Another potential application of machine learning for neurocognitive disorders could be the automatic41
capture and analysis of behavioural signals of potential clinical relevance, both for reducing the risk that42
such signals are missed by the clinician and for adding new and complementary information beyond what43
normally is collected in the medical examination. Such applications have been tested and evaluated for44
single digital biomarkers, such as speech or gaze, and the results have been promising in several cases, as45
further described in Section 3.46

In this study we describe the first comprehensive and highly multimodal approach where signals from47
numerous behavioural and physiological channels are captured and analysed in parallel in real patients, as an48
integrated part of the regular clinical examinations at a major regional hospital. To offer a rationale for this49
multimodal approach, we first (in Section 2) give a short medical background to neurocognitive disorders50
and diagnostic challenges, including neuropathological characteristics and behavioural manifestations. In51
Section 3 we then describe recent developments in digital biomarkers of special relevance for this project,52
including speech patterns, gaze, non-verbal behaviours, and physiological signals. Section 4 then details53
our comprehensive, multimodal approach for gathering patient behaviour data during clinical interviews.54
This is followed by Section 5, which describes how the data can be analysed to extract digital biomarkers,55
and Section 6, which illustrates how the diagnostic relevance of the extracted biomarkers can be analysed.56
The implications of our preliminary findings and of our data gathering in general are discussed in Section 7,57
while Section 8 concludes.58

2 MEDICAL BACKGROUND
2.1 Neurocognitive disorders59

Due to continued global increase in life expectancy, the number of persons with chronic diseases is60
expected to grow dramatically. As for many of these chronic diseases, age is the most important risk factor61
for getting a neurocognitive disorder (NCD) with a doubled risk for every five years of life. At the age of 90,62
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around 50 percent of the population carries a dementia diagnosis, and the prevalence is around 20 percent63
higher for women than for men (Cao et al., 2020). In the case of major neurocognitive disorders (NCD),64
previously named dementia, no pharmacological treatment exists that can cure or halt the disease process.65
Approximately 50 million persons today carry some form of NCD, a number that is expected to grow to66
around 150 million in 2050 if no cure will be been found (Prince, 2015). Due to high-intensive need of67
care in later phases, these diseases put a high burden on limited care resources and societal economies.68
Combating these disorders has been declared a priority by the World Health Organization (World Health69
Organization and Alzheimer’s Disease International, 2012). Neurocognitive disorders exist in various70
forms, where Alzheimers Disease (AD) is the most common globally, accounting for approximately71
60% of all cases, but limitations in vascular function to provide sufficient oxygen and nutrients to nerve72
cells often contribute to cognitive impairments, either alone (vascular dementia), or in parallel with e.g.73
AD. Cognitive disorders in older age may also derive from other neuropathological conditions such as74
Lewy-Body Dementia (LDB), Fronto-temporal Dementia (FTD) and Parkinson Dementia (PD), accounting75
in total for around 30% of all NCD cases (Cao et al., 2020). These neuropathologies are all progressive and76
ultimately lethal, and they typically develop during a long pre-clinical phase that, in the case of AD, may77
have been initiated at least a decade before diagnostic criteria are fulfilled (Jack Jr et al., 2018). With more78
refined measurement techniques, including determination of various protein levels in cerebrospinal fluid79
and high-resolution brain imaging, it is often possible to determine which of these pathologies may lie80
behind also a minor NCD, previously globally referred to as “mild cognitive impairment” (MCI).81

2.2 Neuropathological characteristics and processes82

There may be several reasons for the failure to find a cure against these disorders, in spite of massive83
research investments across the world. The dominating disease model, on which hundreds of failed84
clinical trials have been based, states that AD develops through a cascade of events that are triggered by85
formation of beta amyloid (Aβ) protein plaques, as originally suggested by Hardy and Higgins (Hardy86
and Higgins, 1992). More recently, the upstream formation of neurotoxic Aβ oligomers have become87
more in focus than the plaques, oligomers that may later contribute to plaque formation (McGirr et al.,88
2020). Even if pharmacological success has been made Alzheimer’s disease in terms of targeting amyloid89
proteins with an assumed toxicity, and even dissolving amyloid plaques, patients in these trials have not90
benefitted symptomatically in any of these trials (Kepp, 2017). One reason for appointing special variants91
of betamyloid proteins, especially the Aβ 1-42 peptide, as the culprit, is the early appearance of level92
increases in the brain during early phases of the neuropathological development (Long and Holtzman,93
2019). But association does not prove causation, and one troubling fact for adherents of this hypothesis,94
besides the failures of all amyloid-based drug trials until now, is that many elderly persons have amyloid95
plaques, but without any clinical signs of Alzheimer’s disease (Lane et al., 2018). The fact that betaamyloid96
accumulation does not continue to increase after the initial phase of disease development, seems to suggest97
that it is not directly related to the disease itself, but possibly a trigger – or even an early protective reaction98
against the disease (Castellani et al., 2009; Kumar et al., 2016; Li et al., 2018). As a result, doubts have99
been voiced against the dominating Aβ paradigm (Kepp, 2017) and other disease-related events in the100
brain have received increasing attention. A major alternative mechanism is related to changes in the tau101
protein, a building block for microtubuli, the tiny pipelines that transport substances between the soma102
and the synapses inside the nerve cell, but that also serve as a skeleton to maintain the structure of the cell.103
Degradation of the tau protein during the progression of the disease, through dysregulated phosphorylation104
and transformation into hyperphosphorylated proteins, makes microtubuli axonal transport progressively105
less efficient, leads to synapse loss, to formation of neurofibrillary tangles (NFT) and ultimately cell death.106
Some findings indicate that these changes start in very early stages of disease development, even before107
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changes in Ab (Insel et al., 2020). In contrast to Aβ changes, degradation of tau progresses further in108
parallel with the disease (Long and Holtzman, 2019) and may therefore be a better indicator of disease109
stage, compared to measures of Aβ (Lane et al., 2018). Changes in Ab and tau proteins are often seen as110
related, and, according to advocates of the betaamyloid cascade hypothesis, changes in extracellular Aβ111
precede and trigger tau hyperphosphorylation inside the neuron (Phillips et al., 2020); a detailed diagnostic112
evaluation typically involves measurement of both these proteins in cerebrospinal fluid, especially levels of113
the Aβ 1-42 molecule and levels of total tau and phosphorylated tau (p-tau). The coexistence of extracellular114
accumulation of beta-amyloid and the development of neurofibrillary tangles (NFT) are still considered115
as the main pathological markers of AD, but no drug trials based on either of these targets have so far116
been successful (Long and Holtzman, 2019). Other suggested mechanisms include cholinergic deficits,117
evidenced by the relative efficacy of cholinesterase inhibitors to hamper cognitive decline in AD (Sharma,118
2019), and inflammation, indicated by microglia and astrocyte activation in AD.119

2.3 Behavioural manifestations120

Whatever the mechanisms behind, established effects on cognition (Henneges et al., 2016) and on121
behaviour seem logical from what we know about the underlying pathology and its progression. Usually122
these pathological changes in AD start in the medial temporal part of the brain, from where it propagates to123
neighbouring areas, and to areas with projections from already affected areas. As this part of the brain,124
including the hippocampus and entorhinal cortex, has a central role for especially working memory and125
episodic memory, these functions are typically affected in early phases, albeit subtly at first. The olfactory126
bulbs are close neighbours, and impaired olfaction is also a typical early sign (Phillips et al., 2020).127

Both the ability to understand language and to speak have important centres in the parieto-temporal128
and the temporal lobe, and are also typically affected relatively early, and could lead to slower and less129
articulated speech, difficulty in finding words, and difficulties to understand language. These functions are130
normally controlled from the left hemisphere, while the right parieto-temporal hemisphere is relatively131
more important for spatial functions and orientation. Difficulty in drawing figures and navigation are132
common behavioural manifestations that most probably are related to impaired function in this part of the133
brain, in combination with impairments in especially the enthorhinal cortex. Decreasing efficiency of neural134
functional (e.g. in axonal transport, transmitter substance deficits, and an impoverished synaptic network135
and neural interconnectivity) will also have a number of more general effects that in a progressive manners136
will affect associative ability, reaction time, balance and motor coordination. When the neuropathology137
spreads further, impulse control, attention, and the ability to focus are affected, mainly regulated by the138
fronto-temporal lobes (Migliaccio et al., 2020).139

Long-term memory, especially procedural memory, are spared until late in the pathological development,140
indicating less importance of parieto-temporal regions for these functions. The different effects on short141
term versus long term memory is often illustrated by the ability to detail events that happened decades ago,142
while the person may have no recollection of what happened earlier the same day or week. For example,143
patient with clinical AD may not remember that he or she can play the piano, but positioned in front of144
one, could still start to play it. Recently it has been suggested that the typical AD phenotype is not the145
only one, and what we call Alzheimer’s disease should be considered as a family of related diseases, but146
with important differences in neuropathology, e.g. in terms of primarily affected areas and thereby also in147
cognitive and behavioural manifestations and the sequence of their appearance (Ferreira et al., 2017). The148
progressive nature of AD and other neuropathological diseases means that eventually the whole brain will149
be severely affected and thereby all cognitive and behavioural functions. As a result, dementia care in late150
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stages is resource demanding and, in combination with increasing longevity and the high prevalence in old151
age, presents a large and growing economic burden for societies worldwide (Wimo et al., 2017).152

2.4 Assumptions and rationale for this project153

It seems plausible that odds would improve with earlier intervention for any strategy against any disease,154
including both pharmacological and non-pharmacological strategies, as long as it is based on an adequate155
assumption of the underlying disease mechanism. There are however special challenges with AD and156
other neuropathologies leading to NCD, due to a very long progressive disease development with subtle157
symptoms in the earliest stages. The limited therapeutic success against AD and other neuropathological158
diseases indicates that the underlying mechanisms are not yet fully understood, which could justify a159
broad, open and non-biased approach. A fundamental starting point for such a non-biased and exploratory160
approach is the assumption of a link between brain and behaviour; we know for sure that these diseases161
are diseases of the brain, and this means that aspects of behaviour related to affected brain areas also162
should be affected, albeit subtly in early stages. To exemplify, episodic memory is typically affected in163
AD, most probably due to early damages to hippocampal and entorhinal regions. It could be assumed that164
this cognitive domain is also subtly affected in very early stages, but may not easily be captured by test165
scores in existing cognitive tests. But even if actual test scores should appear non-indicative of an existing166
neuropathology, the subtly affected person may still feel more anxious and need to make more of an effort167
to perform at this level, which should reflect in various ways in the behaviour of the person, not easily168
detected by the naked eye. The same principle should apply to any other cognitive domain that has been169
subtly affected, whether it be reading ability, executive functioning, word finding, or processing speed,170
depending on the type of neuropathology and which brain areas are affected by it. Another example is171
autonomic function that typically has a lower range of variability, being “flatter”, if a person is carrying a172
neuropathological disease (Algotsson et al., 1995). Autonomic function should reflect in degrees of heart173
rate variability, variability in emotional expressions, skin temperature fluctuations, speech volume variation,174
and in pupil size variations. Could any or several of these indicators be identified in early stages and will175
they differ between different types of NCD?176

In this project we use a broad approach to automatically and continuously capture a large number of177
potential digital biomarkers with high precision, by using different sensors. We then subject the collected178
data to machine learning to identify signals and patterns of signals that could indicate an underlying179
neuropathology. In the following we will in greater detail describe the rationale behind each type of180
potential digital biomarker that we capture.181

3 RELATED WORK
This section explores how related sensor data, and digital biomarkers extracted from such data, across182
different modalities have previously been considered for clinical assessment of Alzheimer’s disease.183

3.1 Digital biomarkers184

The term digital biomarkers is used here to specify metrics extracted from sensor data and differentiate185
them from biological biomarkers extracted from biological measurements. A digital biomarker reflects the186
underlying state of the biological system (the human brain) and a good candidate for a digital biomarker187
is one that shows promise in identifying both diagnostic criteria of AD and correlates with established188
biomarkers used in AD examination. This section outlines what digital biomarkers have been used in189
previous research. All digital biomarkers used throughout this article are written in italics.190
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3.1.1 Speech and language191

Alzheimer’s disease leads to a decline in cognitive and functional abilities, such as memory loss and192
language impairments. There have been numerous review studies on linguistic biomarkers that have been193
used for detecting the progression of AD (Voleti et al., 2019; de la Fuente Garcia et al., 2020; Slegers et al.,194
2018; Calzà et al., 2020; Mueller et al., 2018). These include both acoustic features (prosodic, spectral,195
vocal and fluency), and textual features (lexical, syntactic, semantic, and pragmatic). Vocal features such as196
speaking rate, fluency and voice quality could be useful as biomarkers for early detection of AD, since197
they stem from atrophy in the medial temporal lobe (König et al., 2015). In a longitudinal study Ahmed198
et al. (2013) found that lexical, syntactic and semantic complexity changed significantly as the the disease199
progressed, but not voice quality or fluency. Speaking rate have been found to be the earliest measurable200
linguistic feature for AD detection (Szatloczki et al., 2015). MCI patients have been found to have a more201
breathy (H1-A3) and weaker voice (CPP) than NC (Themistocleous et al., 2020). Number of silent pauses202
(especially those longer than 2 seconds) have proven to be useful for AD detection (Yuan et al., 2020),203
as has the average length of silent pauses (Tóth et al., 2018; Roark et al., 2011). The increase in pause204
frequencies has been attributed to struggles with lexical retrieval, but might also reflect other cognitive205
impairments as pauses increases with cognitive load (Pistono et al., 2016). In a study on language use in206
unstructured interviews, AD subjects were found to use fewer Nouns, while more Adjectives, Verbs and207
Pronouns than healthy older participants. They also used a smaller vocabulary size (Bucks et al., 2000). The208
lexico-semantic variables appear to be the most useful for the diagnosis of later stages of AD (Boschi et al.,209
2017). These results suggest that the occurrence of dementia is associated to reduced syntactic complexity,210
difficulty in connecting one event to the next, in maintaining the theme, and in understanding the story.211
Furthermore, grammatical errors have mainly been observed in severe AD groups (Jarrold et al., 2014).212
Some semantic features seem to be relevant for MCI though. Asgari et al. (2017) tagged transcription of213
patient doctor interviews using the Linguistic Inquiry and Word Count (LIWC). Using this, they divided214
the words into five broad categories: Linguistic processes; Personal concerns, Psychological processes;215
Relativity and Spoken categories. The category that was most significant for MCI was the relativity category216
that included words dealing with time and space. Haider et al. (2019) demonstrated the usefulness of purely217
acoustic features, e.g. eGeMAPS (Eyben et al., 2015), openSmile (Eyben et al., 2010), and ComParE218
(Eyben et al., 2013), that has proven useful for other paralinguistic detection tasks.219

3.1.2 Facial gestures220

The effects of AD on facial gesture and expressiveness can be significant, but it is a complex relationship.221
Overall facial biomarkers are most related to the later stages of AD with the MCI group having different222
facial expression in relation to the AD group. On the one hand, apathy is one of the most common223
behavioural symptoms of AD and is linked to deficits in goal-directed behaviour, decreased goal-related224
thought content and emotional indifference with flat affect (Cai et al., 2020), which in turn leads to overall225
reduced facial expressivity (Seidl et al., 2012). Asplund et al. (1991) found that patients in the later stages226
of AD struggled to show facial emotional reactions when experiencing emotional stimuli. Burton and227
Kaszniak (2006) found reduced correlation between emotional state (valence) and zygomatic activity228
(smiling) for patients with AD. The AD patients experience the emotion (happiness) but are less likely to229
do the linked zygomatic activity (smile). On the other hand, dementia is also generally linked to reduced230
control over facial expression, in many cases leading to increased facial expressiveness. Smith (1995) found231
that people with mild dementia exhibited reduced control of negative expression during a picture stimuli232
experiment. The relationship between stimuli and facial muscle expression of emotion is complicated since233
deficit in emotional facial expression can be caused by several factors. Seidl et al. (2012) concluded that234
cognitive deficits are associated with increased rate of total facial expression after controlling for apathy. In235
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addition, Matsushita et al. (2018) found that AD patients had an increased tendency to use smile as a “save236
appearance response” when they fail to provide the correct answer to questions.237

3.1.3 Motor signs (hand and pen motion)238

Even though cognitive impairments are the most common signs of dementia, motor functions are also239
affected by the disease. Motor signs like speech/facial expression, rigidity, posture, gait and bradykinesia240
have been found to increase in frequency and severity over time in AD patients (Scarmeas et al., 2004).241
Chung et al. (2012) has developed an inertial-sensor-based wearable and a stride detection algorithm242
for analysis of Alzheimer patients’ gait behaviour. In a user study they were able to show difference243
in gait profiles between the AD patients and the healthy controls. The finger tapping test is used as a244
neuropsychological assessment of fine motor skills (Reitan and Wolfson, 1985). It has been found useful245
for AD assessment, where AD patients produced a finger tapping pattern that was lower in frequency with246
slower, more variable inter-tap interval than the health control group (Roalf et al., 2018). Previous studies247
show that MCI and AD patient have a lower drawing speed when performing handwriting tasks with lower248
pen pressure with the differences corresponding to the groups with more deteriorated groups showing249
larger differences. Only using these kinematic measures, a classification accuracy of 69 to 72 percent250
was achieved. (Werner et al., 2006). Gatouillat et al. (2017) propose some novel measurements/features:251
pen-tip normal force, total grip force, and an objective writing quality assessment. They do not correlate252
with cognitive aspects per se, but measure trade-offs between timing and accuracy in the writing and such253
things. Garre-Olmo et al. (2017) used a digital pen in a number of tasks (Clock test, copying two and-three254
dimensions drawings, copying one sentence, writing dictated sentence). Apart from speed and pressure,255
they found that the time the pen was in the air was a discriminant feature between AD, MCI and NC.256

3.1.4 Gaze and pupil dilation257

There has been research on understanding cognitive deterioration and dementia from eye movements258
(Zhang et al., 2016). For different tasks, the eye movements of people with AD differs from control subjects259
(Beltrán et al., 2018). Gaze patterns of patients with AD show greater variance in all directions. This is260
linked to cognitive decline and deficits in attention which leads to more frequent eye and facial movement261
(Nam et al., 2020). AD patients have also been found to have problems following a moving target (Molitor262
et al., 2015). These variations in gaze in AD patients are likely due to damage to frontal and parietal lobe263
regions related to attention (Garbutt et al., 2008). When comparing facial muscles and eye movement,264
less variability is seen for AD patients compared to healthy controls (Nam et al., 2020). Pupil dilation is265
a robust predictor of cognitive load, the working memory demands of performing a certain task (Gavas266
et al., 2017). Pupillary response, mainly in terms of changes in reaction to light, has been proposed as a267
biomarker of early stages for Alzheimer’s Disease (Granholm et al., 2017), However, a longitudinal study268
with AD biomarkers is needed to confirm whether pupillary responses can provide a predictive biomarker269
of risk specific to AD-related declines.270

3.1.5 Autonomic nervous system271

Heart rate variability (HRV) has been used extensively to predict dementia (Zulli et al., 2005; Negami272
et al., 2013; Allan et al., 2005) as was recently reviewed in da Silva et al. (2018). There is no consensus in273
the field, as some studies found that HRV time and domain parameters were lower in patients with AD than274
in patients with MCI and controls (Zulli et al., 2005; de Vilhena Toledo and Junqueira, 2010), while others275
found no difference (Allan et al., 2005; Wang et al., 1994). In general, there is no strong evidence to use of276
the HRV alone as biomarkers to diagnose dementia (da Silva et al., 2018). The sympathetic nervous system277
can also be probed using a Galvanic Skin Response sensor, such as the Empatica wrtistband, has been278
found to be useful in determining stress during activities (Schlink et al., 2017). Sympathetic skin response279
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(SSR) and HRV together were used to detect an abnormality of autonomic function in patients with AD280
(Negami et al., 2013).281

3.1.6 Thermal emission282

Experiments on using Thermal imaging for inferring stress indicate a relationship between an increase283
of workload and thermal emissions (Anzengruber and Riener, 2012). Zhou et al. (2019) used a wearable284
thermal sensor and found that it can be possible to use such a system for estimating mental workload.285
Ruminski and Kwasniewska (2017) presents a review of thermal imaging in mobile conditions together286
with a proposed prototype. Furthermore, sleep-disordered breathing is associated with a higher risk of287
AD onset after matching and adjusting for other risk factors (Lee et al., 2019b). Recent pilot study, Tiele288
et al. (2020) confirms the potential utility of analysing breath volatile organic compounds to distinguish289
between MCI, AD and controls. Respiration rate has successfully been extracted from thermal imaging by290
automatically analysing the thermal fluctuations in the nostril area (Lewis et al., 2011). Cho (2018) used a291
mobile thermal imaging device in order to infer “stress” levels by extracting respiration rate.292

3.2 Automatic capture and analysis of cognitive assessment tests293

Recently, there have been large efforts in automating the screening of Alzheimer’s disease. Tóth et al.294
(2015) report a completely automated speech-based screening pipeline that yielded significant discrimin-295
ation results. König et al. (2018) has developed an iPad application that can perform a semantic verbal296
fluency test and automatically perform a fine-grained analysis of the spoken input. ICAT is an internet-based297
cognitive assessment tool that uses speech recognition for a delayed list learning task and drag and drop298
GUI input for a number sorting task (Hafiz et al., 2019). In the Talk2Me project anonymous people can299
contribute with both speech and text via a web interface (Komeili et al., 2019). The speech tasks include300
describing a picture and retelling a story that is displayed on the screen for a short while. The text-input301
tasks include image naming, word naming and providing word definitions. The authors have also developed302
a linguistic analysis package called COVFEFE that they have made available as open source. Intelligent303
Virtual Agents have also been used to to collect spoken interactions, for example to automate parts of the304
initial interview at a memory clinic Mirheidari et al. (2017). In a series of studies the team has used a mix305
of automatically generated acoustic and lexical features with manually acquired conversational analysis306
inspired features to predict AD (Mirheidari et al., 2019; Walker et al., 2020). Today’s smart phones and307
wearables have a large number of sensors that could be used in data collection for dementia detection. This308
includes camera, microphone, accelerometer/gyryscope, touch, geoposition, ECG and IR cameras (Kourtis309
et al., 2019). Using wearable consumer products have been used for continuous monitoring of symptoms310
related to cognitive impairment (Chen et al., 2019). As an example, UbiCAT is a ubiquitous cognitive311
assessment tool for smart watches, that includes three cognitive tests: the Arrow two-choice reaction-time312
test, the N-back letter test, and the Stroop color-word test (Hafiz and Bardram, 2020).313

In the current study we present a multimodal capture and analysis framework that makes use of non-314
obtrusive and affordable sensors in capturing the human behaviour during memory tests. It has been315
integrated into the fast-track cognitive assessment procedure that is used at the memory clinic of a major316
regional hospital in Sweden.317

4 DATA COLLECTION
We now describe the setup and procedures we used for gathering our multimodal behavioural and phsyiolo-318
gical data. All recordings were performed during clinical examinations at the Memory Clinic at Karolinska319
Hospital in Stockholm, Sweden. The examinations are part of an established fast-track analysis where320
a multi-disciplinary team assess the patient within one week. The complete examination includes brain321
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scanning (MRI), neuropsychological assessment, speech and language assessment, assessment of mo-322
tor skills, physical examination, and a one-hour clinical interview. Our recordings took place during323
the clinical-interview portion of the examinations, the procedure of which was minimally modified and324
standardised to accommodate the recordings, as described in Section 4.6.325

During most of the clinical assessments at the clinic the patient and the clinician are sitting on opposite326
sides of a table. In some cases, including some of our recordings, a partner or relative of the patient may be327
present and sitting beside the patient. For our study, these assessments took place in a particular room at the328
clinic, where the room and the table had been instrumented for multimodal data capture. Figure 1 shows329
the custom-built, instrumented “recording table” used. The entire setup encompasses sensors for recording,330
interfaces for controlling, monitoring, and performing data gathering, along with miscellaneous other331
equipment, e.g., for storing the data, and a recording software infrastructure that coordinates the different332
devices and ties everything together. The remainder of this section describes the various components in333
more detail, along with the procedures for conducting the clinical sessions and exporting the data. For an334
overview of what modalities each sensor captured, please see Table 1. Figure 1 shows the data collection335
setup from the clinical environment. The clinical assessments at the hospital conclude with a physical336
examination in a different part of the room, but this part of the assessment procedure was not recorded,337
since the potential added benefits of such data was not considered commensurate to the privacy intrusion it338
would entail.339

4.1 Design considerations340

A key consideration when designing the data-collection methodology was to create a setup with a minimal341
impact on the clinical assessment, in order to maintain the ecological validity of the collected corpus. For342
example, eye movements and pupil dilation can be collected either using a display-mounted eye tracker343
or by having the user wear eye-tracking glasses. Although the glasses are much more effective, they are344
cumbersome to wear, distractive, and also increase the sense of being monitored. We therefore opted for a345
display-mounted eye tracker instead. The case of audio recording is similar: a head-mounted microphone346
provides better quality than microphones fixed to the table generally do, but again, requires equipping the347
patient with hardware. Considering these facts, we settled on using a setup with mobile phones (Apple348
iPhones) mounted to the table, which are less associated with looking like cameras than other types of349
“normal” cameras, for capturing video and facial data. We also use an array microphone integrated into the350
table which is able to capture speech from both the clinician and the patient. For eye-tracking we opted351
to use a Tobii Nano which is able to capture eye movement and pupil dilation at a distance, attached to352
the bottom of the tablet. The only device which the patient is carrying is a health wristband, which was353
considered to not be as invasive, since it is not uncommon to wear a watch on the wrist.354

4.2 Sensors355

Below we introduce the various sensors and equipment used for the data collection procedure.356

4.2.1 Cameras357

Similar to Malisz et al. (2019) a pair of Apple iPhones X (from here on referred to as “Patient camera”358
and “Clinician camera”) were used in order to record both the patient and the clinician. An additional,359
third iPhone X was used for capturing thermal data (“Patient camera (thermal)”) from the patient, and a360
fourth capturing the whole interaction from a distance (“Overview camera”). Please see Figure 5 to see361
how the iPhones were connected with the system, and Figure 1 to see how the cameras were placed and362
mounted. For the three iPhones capturing close-ups of the patient and clinician (“Patient iPhone”, “Patient363
camera (thermal)”, and “Clinician camera”), a mount from JOBY was modified and attached to the table.364
Furthermore a holder was 3D-printed in order to attach the “Patient camera” with the “Patient camera365
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Touch screen pen
Eye tracker

Microphone Array

“Clinician camera”

Laptop
“Clinician interface”

Health wristband

Tablet
“Patient interface”

“Overview camera” 

“Patient camera”3D-printed holder

JOBY phone mount

“Patient camera (thermal)”

Thermal 
camera

Figure 1. The data collection setup. At the top an overview of the room is given, showing both the
instrumented recording table and the position of the “overview camera”. In the middle the various devices
on the instrumented recording table are shown and at the bottom a close-up of the patient facing cameras.
This is a provisional file, not the final typeset article 10
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Table 1. A summary table of what modalities each sensor captures.
Sensor Modality Captures

Eye tracker (Tobii Nano) Gaze Patient
Pupil dilation Patient

Health wristband (Empatica E4)
Heart rate Patient
Galvanic skin response Patient
Accelorometer Patient

Cameras (4 Apple iPhone + 1 FLIR one)

Video Patient, clinician, and overview
Facial gestures Patient, clinician
Thermal emission Patient
Voice Patient, clinician

Microphone Array(ReSpeaker Mic Array v2.0) Voice Patient, clinician
Language Patient, clinician

Tablet (Apple iPad) Pen movement Patient
Pen pressure Patient

Figure 2. The interface used to set up the iPhones before a data capturing session. Here one can set the IP
address and an identifying name of the phone. Furthermore one can select which data streams to capture.

(thermal)” (see Figure 1). As can be seen in Figure 1 the “Patient camera (thermal)” had a FLIR One366
thermal camera attached to it, together with a charging cable. These iPhones used a software developed367
specifically for these data recordings, and synchronised their time with the FARMI server. When starting368
the application all the recording options were presented, and which data streams that should be captured369
could be selected. Those were; RGB video, facial gestures (parametrised facial expressions and head370
movement), depth data, 3D-mesh data, thermal video, RGB reference video for the thermal video, and371
thermal data. As can be seen in Figure 2, the various data streams can be turned on or off. The iPhones372
were configured to send out an image every 3 seconds which the status page could display, in order for the373
technician to act in case there were issues with the video.374

4.2.2 Health wristband375

Originally an Apple Watch was used in order to capture heart rate and accelerometer data for the patients.376
The apple watch was later replaced with an Empatica E4 wristband that captures heart rate, accelerometer377
data, and electrodermal activity.378

4.2.3 Microphone Array379

A microphone array (ReSpeaker Mic Array v2.0) was installed into the table in an approximately 10cm380
round hole in the center of the table. The microphone array was covered with a mesh cloth (see Figure 1).381
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The microphone array was connected using a USB cable to the central computer. The default LED lights382
indicating the direction of speech were disabled, as they were deemed distracting.383

4.2.4 Eye tracker384

A Tobii Nano was used in order to capture eye movement and pupil dilation of the patient while interacting385
with the Tablet. Figure 1 shows how the eye tracker was placed. A custom mount for the tablet was 3D-386
printed in order to place the eye tracker at an appropriate height and angle with respect to how the patient387
sits. A manual calibration procedure was required before each session, where the patient was asked to388
focus their gaze at circles displayed on the tablet. The calibration was initiated from the status page and389
performed together with a technician. The eye tracker was connected to the central computer. The eye390
tracker collected data throughout the whole assessment but was meant primarily for when the patient391
interacted with the tabled.392

4.2.5 Tablet393

A tablet was used (Apple iPad) together with a touch enabled pen (Apple Pencil) which hosted the394
clinician interface (described in Section 4.3.2). The tablet was placed in a stand with some inclination (see395
Figure 1) such that it would be easily operated for the patient without the need of moving the tablet.396

4.3 Interfaces397

There were three user interfaces, one for the patient, one for the clinician, and a monitoring tool for398
monitoring the session. All of the user interfaces were web applications which were hosted on the central399
computer. Each of them are described below.400

4.3.1 Patient interface401

A tablet interface was developed to replace certain parts of the MOCA test. The tablet interface was a402
web interface controlled by the clinicians interface (described below) and was black when nothing was403
displayed in order to not to be distracting. The tablet was used for six tasks:404

• Cookie theft test, where the participant was presented an image and asked to describe what they see.405

• Cube drawing, where the participant is asked to draw a copy of a three-dimensional cube which is406
presented to them.407

• Three images, where the participant is presented with three images, and asked to describe them408

• Trail making test (TMT), where the participant is presented with a number of letters and numbers, and409
asked to trace a line between them in ascending order alternating between letter and number each time410
(1, A, 2, B...).411

• Clock drawing, where the participant is asked to draw a clock, with the time set to ten after eleven.412

For the tasks were the patient had to input something (Cube drawing, TMT, and Clock test) the interactions413
were performed using an Apple Pencil, and all movements together with the pressure applied when drawing414
was recorded.415

4.3.2 Clinician interface416

The clinician interface (see Figure 3) was a web application displayed through a touch-enabled laptop417
(Microsoft Surface). The clinician was able to choose what was displayed on the tablet interface for the418
patient, or just to make the patient screen go blank. It was also possible for the clinician to end the recording419
from this interface. The clinician also received the results from the drawing tasks through this interface,420
as the tablet was positioned toward the patient. These drawings could then be printed and added to the421
patients medical journal.422
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Figure 3. The clinician interface (in Swedish). The patient has just performed the TMT test, and drawn
the connecting lines. The clinician has then made the screen blank. The interface is designed to be operated
through a touch screen.

Figure 4. Interface of the monitoring tool used by the technician. The images from the cameras have been
cropped out for privacy reasons.
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4.3.3 Monitoring tool423

A monitoring tool in the form of a web application was created in order to be able to monitor the424
recordings (see Figure 4). Each sensor except the wristband sent a “heartbeat” signal with an interval of 5 s425
to the recording server (described below). This heartbeat was used in order to determine whether a device426
was connected to the recording setup or not, and displayed as a red or green indicator on the status page.427
Furthermore a still image captured by the iPhones every 3 seconds was also shown on the status page in428
order to see that data is being collected accordingly. Statistics about memory and processing usages, and429
battery information for the FLIR One camera was also presented. The status page was used to start and430
stop the recordings, and also initiated the eye-tracking calibration on the patient interface.431

4.4 Recording software infrastructure432

Since the aim was to have a recording setup with a large number of sensors, computers, mobile devices433
and wearables working together, it was of central importance to have a communication framework that434
would allow for a finely controlled synchronisation of all data streams and remote access to start and stop435
recordings across the various devices involved. To accomplish this, we used a modified version of the436
open-source FARMI framework1 for recording multimodal interactions (Jonell et al., 2018). The different

Figure 5. Diagram showing each sensor component and how they are linked together with the data
capturing framework.

437
devices used for the recordings provide data streams of different frame rates, and each device has its own438
internal system time that is likely to differ between devices. FARMI was designed to synchronise such439
streams in a robust manner. It acts like a publish–subscribe framework, meaning that components in the440
system can either publish data at a certain topic or subscribe to receive data from a certain topic, and ensures441
that each device always has a known time offset relative to a central server, and that each data packet which442

1 https://github.com/kth-social-robotics/multisensoryprocessing
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is stored or sent out is timestamped with a timestamp synchronised with that central server. The overall443
software architecture is illustrated in Figure 5. It is a decentralised system where each component works444
independently of the other. Three publish-subscribe topics were used, one named “Start-Stop”, which445
was used for sending out a signal to all devices to start recording, one named “Status image/info”, which446
the cameras used to send a an image every 3 s to the monitoring tool along with various usage statistics,447
and lastly a heartbeat topic which was used by all devices to signal to FARMI that the devices were still448
operational.449

Besides being a framework, FARMI also provides a server. Specifically, each sensor or interface would450
start a ZeroMQ2 server, and send their IP addresses together with a topic name to the central FARMI server.451
This server would then be used as a directory service by other parts of the network for knowing which IP452
address a certain type of data was being published at. When a new sensor connected to the framework,453
this information was sent to all other connected devices so that they could connect to the new device if454
needed and subscribe to its data stream(s). To verify that they were still operating correctly, all sensors also455
published a so-called “heartbeat” signal at 5 s intervals that the FARMI server subscribed to. This was used456
to remove entries in the directory that had not properly sent an explicit shutdown signal to the server.457

The different interfaces used to control, monitor, and carry out recording also leveraged FARMI. Spe-458
cifically, each of the the patient interface, clinician interface, and monitoring tool was a web interfaces459
hosted on the central computer named “Web server” in Figure 5. The clinician interface could control what460
was shown on the patient interface, through communication via websockets3. Both the clinician interface461
and the monitoring tool could send out a start or stop signal via the FARMI Start-Stop topic. Furthermore,462
the monitoring tool could instantiate calibration of the eye tracker, and would at the same send a signal via463
websockets to the patient interface to show the eye-tracker calibration screen.464

Most of the software connecting the sensors with the central computer was written using Python and the465
FARMI framework, however the code for the cameras, which were Apple iPhones, was written in Swift,466
utilising the FLIR framework4 for thermal images, the ARKit framework5 for capturing facial gestures467
and video, and the FARMI framework for communication with other devices. Sound was also recorded.468
This data was then stored locally on the phone, but timestamped using synchronised timestamps from the469
FARMI framework. Images and phone health statistics were published using FARMI every third second470
in order to be displayed on the monitoring interface. All sensors subscribed to the Start-Stop topic in471
order to receive a signal when to start and stop recordings. The gaze recorder used the Tobii SDK6 to472
communicate with the Tobii Nano device, while the audio recorder used a Python library from ReSpeaker7473
to communicate with the microphone array.474

4.5 Other equipment475

A printer was used for the clinicians to print out the results from the MOCA test for purposes of medical476
record keeping. The printer was connected via WiFi to the router, and could be accessed from the clinician’s477
computer. A router (Asus RT-AC66U) was used to connect all the devices. For data security, this router was478
not connected to the Internet, meaning that the entire data-collection setup was isolated from the Internet.479
A Bluetooth-connected button was initially used for capturing points of interests deemed by the clinician480

2 https://zeromq.org/
3 https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
4 https://developer.flir.com/mobile/flironesdk/
5 https://developer.apple.com
6 http://developer.tobiipro.com/python.html
7 https://github.com/respeaker/respeaker_python_library
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during the recording sessions. This turned out to be difficult to maintain, and is thus not part of the final481
dataset.482

4.6 Procedure483

In this section we describe the procedure of the data capture from selection of patients to recordings484
during clinical assessments, data export and collection of biomarkers485

4.6.1 Selection and recruitment of participants486

The participants in this study are recruited among patients at the Memory Clinic at Karolinska University487
Hospital in Solna, Sweden. The clinic specialises in relatively young patients with cognitive complaints,488
and many the patients are referred from other clinics to receive a thorough and advanced evaluation. The489
prevalence of dementia is below 1% for persons between 60 and 65 in all parts of the world (Ferri et al.,490
2005) and a dementia diagnosis below the age of 55 is very rare. Persons below 55 years of age were491
therefore excluded for reasons of clinical relevance and generalisability. To avoid expectation effects on492
patient behaviour in the interview situation, patients with an obvious or very probable neurocognitive493
disorder, as revealed by referral medical documentation, were also excluded. To reduce variability from494
interviewer behaviour, almost all interviews are carried out by one of two physicians who were trained to495
perform the examination to fit the requirements of the study (including use of tablets instead of paper and496
pen in some tasks, positioning of chairs for optimal video capture, and administration of additional tasks,497
as described above).498

At this point, we have recorded 25 patients before the outbreak of the COVID-19 pandemic suspended the499
data gathering, with our aim being to recruit and record 100 patients in total. Based on previous data from500
the clinic, we expect that approximately 50% of these will be diagnosed with a neurocognitive disorder, a501
prognosis that seems adequate based on the diagnostic outcomes so far.502

In this project each patient has given consent to use their medical record information for research purposes,503
information that is used to evaluate the clinical relevance of recorded behavioural signals in the interview504
situation, and that will be used for development and refinement of algorithms to optimise prognostic validity505
of our system. Ethical approval for the study was obtained from the Stockholm Ethical Board in decision506
dnr. 2018/1962-31.507

4.6.2 Recordings during the clinical assessment508

Each patient who fulfils the criteria for participation receives written information beforehand about509
the study, along with the summons for the examination. A week later a nurse calls the patient to ask510
if they want to participate in the study. After arrival to the clinic, the patient is asked again if they are511
still willing to participate and, if so, to sign the written consent form. The wristband is mounted and512
calibrated and the patient then walks with a physician to the examination room. Once the patient is seated,513
the eye tracker on the lower part of the tablet is calibrated. The researchers then leave the room and the514
multimodal recording starts. One technician continually monitors the recording a screen outside the room,515
as described in more detail below. The recording is terminated when the physical examination part starts,516
usually after 45–60 minutes of interviewing and testing. The examination is performed according to the517
normal clinical procedure at the clinic, but with some adaptations and additions to fit the purpose of our518
study: The first part of the interview is about the patient’s background; living conditions, current and519
previous occupations, family situation, interests, memory problems or other cognitive problems, changes520
in personality, medication, sleep, medical history, and orientation in time and space (date, day of week, the521
location they are in). This part can be described as a conversation between the physician and the patient,522
and was carried out according to normal routine.523
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The second part includes a number of tasks that the patient performs to evaluate cognitive status, including524
the Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 2005). This screening instrument includes525
various tasks to test performance in different cognitive domains, including drawing a line between letters526
and numbers (trail making), copying a figure, naming animals, drawing a clock that shows a certain527
time, immediate and delayed recall of words, generation of words, backwards counting, finger tapping,528
and abstract thinking. The figure copying and clock tests in particular are made to measure visuospatial529
constructional abilities and executive functioning (Charernboon, 2017). MoCA is a standard part of the530
examination protocol at the clinic, but for the patients who participate in the study it is adapted to be531
performed on a tablet, thereby allowing for detailed registration of pen movements and eye movements532
while the tasks are being performed, including trail making, the clock test, figure copying, and presentation533
of animals that the patient should name. For the tasks that involve drawing on the tablet, these drawings are534
mirrored in real time on a separate screen that the physician can see. The Boston Cookie Theft test (Giles535
et al., 1996) was added to the protocol for the purpose of this study, but is commonly used for screening. In536
this task the patient is asked to describe what is happening in a picture, a kitchen scene with a woman and537
two children. This picture is also shown on the tablet, allowing to sync eye movements and pupil changes538
with audio and video. When this part of the examination is over, the recording stops, and the wrist band is539
removed.540

4.6.3 Export of data541

An export tool chain was created to export all of the files collected during the session in a standardised542
way, producing a set of CSV files. This step was performed by the clinician. The data was then stored on543
small hard drives in safety vaults. The data from the computers and phones was removed.544

4.6.4 Further tests and collection of other biomarkers545

After this first interview and examination of the patient, further data are collected to evaluate the cognitive546
status during the same and consecutive days, including more advanced cognitive testing, evaluation of547
mood and depressive symptoms, blood sample analysis, brain imaging (MRI, sometimes with the addition548
of PET if needed), and collection of CSF for analysis of biomarkers (levels of β-amyloid (Ab 40 and549
42), tau, p-tau, and neurofilaments). The diagnostic decision is normally made within a week from the550
first interview, supported by the CombinosticsTM (Bruun et al., 2019) AI tool to combine results from the551
different sources of clinical information.552

5 DATA ANALYSIS
In order to verify the validity of the data collected to date and to be able to compare against available553
measurements from each of the recorded patients, we perform a series of analyses and extract several554
descriptive physiological and behavioural metrics based on our captured modalities with a potential to555
serve as digital biomarkers. The extracted measures are summarised in table 4. In most cases these metrics556
are calculated using basic statistics directly or indirectly over the collected data streams. For each of the557
extracted markers, we then calculate the correlation against a subset of clinical assessment metrics and558
biomarkers available as part of the regular memory clinic examination procedure. These are indicated559
in table 3. A high correlation between one of our metrics and a clinical assessment variable indicates a560
potential suitability for that metric as a digital biomarker for AD. Below we describe how we extracted and561
analysed the various metrics from the captured modalities. As there is a large number of possible analysis562
that can be made, some have not been analysed in the scope of this work, and are instead suggestions for563
what can be analysed in the future. The modalities that were not analysed in this work were heart rate, skin564
conductivity, hand motion, and video. The others are described below.565

Frontiers 17



Jonell, Moëll, Håkansson et al.

Table 2. A summary table of what physiological and behavioural measures can be extracted from each
modality, an indication of which ones are used in the correlation analysis and an indication if the measure
is task independent.

Modality Measure Part of preliminary analysis Task independent

Facial gestures

Mean face velocity 3 3

Mean smile 3 3

Mean brow 3 3

Mean jaw 3 3

Head motion 3 3

Facial gaze measurements 3 3

Facial patterns 7 3

Emotion expression 7 3

Gaze

Number of fixations 3 7

Mean fixation duration 3 7

Number of reading fixations 3 7

Number of reading backtrack 3 7

Percent backtrack 3 7

Hand motion Gait 7 3

Hand movement 7 7

Heart rate Heart rate variability 3 3

Heart rate change over time 7 3

Language

Average word length 3 3

Unique words 3 3

Part-of-speech-tagging 3 3

Word complexity 7 3

TFIDF-vectors 7 3

Pen motion & pressure Drawing speed 3 7

Pen pressure 3 7

Pupil dilation Pupil change 3 7

Pupil diameter 3 7

Galvanic Skin Response Electro-dermal activity 7 3

Thermal emission Head temperature change 3 3

Breathing 7 3

Video
Skin color changes over time 7 3

Posture 7 3

Body movement 7 3

Voice

h1h2 (Voice quality) 3 3

h1h3 (Voice quality) 3 3

h1a1 (Voice quality) 3 3

h1a2 (Voice quality) 3 3

h1a3 (Voice quality) 3 3

Average pause length 3 3

Mean long pause length 3 3

Pause count 3 3

5.1 Facial gestures566

The blendshape face data, including information on head motion and gaze, was captured from the “patient567
camera” sensor. From this data the following low level statistics were extracted: smile mean, smile stdev,568
eyebrow stdev, head yaw/pitch/roll stdev, vertical/horizontal gaze shifts stdev and vertical/horizontal gaze569
shifts absolute mean.570
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Table 3. Summary table of clinical assessment metrics available, and an indication of which ones are used
in the correlation analysis. From the MRI we have relative volume measurements for 248 brain regions; the
table lists regions whose absolute Pearson correlation with diagnosis exceeds 0.7.

Modality Assessment Part of preliminary analysis

Medical assessment

Diagnosis 3

Moca-Mis 3

MOCA 7

PHQ9 7

Background variables 7

Spinal tap Phosphorus Tau 3

Ab42 3

Tau 7

Ab42Ab40 7

Ab42Ptau 7

NFL 7

Neuropsychological tests

MMSE 7

RAVLT delayed recall 7

Rey complex figure 7

WAIS Digit Symbol—Coding 7

MRI Hippocampus total volume 3

Hippocampus (Left, Right) 7

Lateral ventricle (Left, Right) 7

Cerebellar vermal lobules (Left, Right) 7

Cerebrospinal fluid 7

Medial temporal lobe atrophy (Left, Right) 7

Cerebral cortex left GCA 7

Frontal lobe (Left, Right) GCA 7

Temporal lobe left GCA 7

Parietal lobe left GCA 7

In addition we calculated the correlation between vertical gaze shifts and vertical head movement as well571
as the correlation between horizontal gaze shifts and horizontal head movement.572

5.2 Gaze573

From the gaze data we extracted the following digital biomarkers: number of fixations, mean fixation574
duration, number of reading fixations, number of reading backtracks (how many times during reading a575
fixation occurs to the left and above the previous fixation) and percentage of reading backtracks.576

5.3 Language577

The patient-clinician pairs of audio files were transcribed using Google Cloud Speech To Text in Swedish.578
The transcribed text was available as words with a start and end time and a confidence score for the579
translations. The transcribed patient text was used for language analysis. We extracted the following580
high-level metrics from the transcriptions: Total number of words and total number of utterances (during581
interview), Average turn length (Average number of words in a passage of patient speech with no in-between582
clinician speech) and Percentage unique words (number of unique words divided by total number of words).583
The ASR output was POS tagged with Universal-Dependencies formalism using the Stanford-NLP python584
package. These were used to develop 35 language features related to word type, open or closeness of word585
categories and average for all word categories. Examples of features are Relative occurrence of adjectives,586
adverbials, verbs and nouns.587
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5.4 Pen588

The pen data from the parts of the clinical assessment where the patient was expected to draw something589
on the tablet was used to extract several different metrics, both independently for each part of the three590
drawing exercises in the MOCA test (trail, cube and clock) and for all of them taken together. The following591
metrics were calculated: number of gaps (how many times pen was lifted), gap length, mean and standard592
deviation (for how long was pen lifted), drawing speed, mean and standard deviation (how fast was the593
pen moving) and pen pressure, mean and standard deviation.594

5.5 Pupil dilation595

From the gaze sensor data, we extracted pupil dilation measurements recorded together with the gaze596
tracking data, in order to study at pupil diameter diameter across the each sessions. Measurements for left597
and right pupil were averaged, and rate-of-change was calculated by taking the difference between each598
consecutive reading. A median filter of length 9 was applied to the rate-of-change signal to remove outliers599
due to sensor noise. We then extracted following metrics: pupil maximum positive rate-of-change (how fast600
can the pupil expand) and pupil maximum negative rate-of-change (how fast can the pupil contract), pupil601
maximum rate-of-change (how fast can the pupil change, regardless of direction), pupil mean absolute602
rate-of-change (how fast does pupil change on average) as well as pupil diameter standard deviation. All603
metrics were extracted independently for each of the exercises on the patient interface.604

5.6 Thermal emission605

The “Patient camera (thermal)” sensor produces a thermal video, a thermal data file with temperatures606
given in Kelvin, and a RGB reference video. The RGB reference video is aligned to match the thermal607
video and thermal data file. Images from the RGB reference video and thermal video were extracted at608
one frame per second. Using the RGB reference frames it was then possible to apply the openpose pose609
extraction framework, Cao et al. (2021), to extract the pose of the patient. This was then used to determine a610
bounding box around the head, and the 10 highest values were then extracted from the corresponding region611
in the thermal images. The values were then aggregated and averaged for each minute of the interaction,612
and converted into percentages. Given the sequences of temperature readings with one value per minute,613
we extracted four metrics: temp mean, temp stdev, temp rate-of-change mean and temp rate-of-change614
stdev.615

5.7 Voice616

The recordings from the Microphone Array were split into patient and clinician audio files based on the617
angle of the sound source as reported by the microphone. The patient audio was used for voice analysis.618
In this preliminary analysis, minor irregularities were present in the voice splitting due to inaccuracy619
of direction of arrival (DoA) estimation, resulting in small segments of patient audio being labelled as620
clinician audio and vice versa, in particular in sections where there are overlapping speech (typically quite621
rate). More accurate methods can be applied by combining the four raw mic signals from the mic array.622

5.7.1 Pauses and speech rate623

All gaps in the patient’s speech of a duration longer than 200 ms, with no intermediate speech from624
the clinician, were regarded as pauses. Start and end times for each word were retrieved from the output625
of the automatic speech recognition. We extracted several pause related metrics, such as pause count626
(total number of pauses), average pause length as well as percentage pauses that are longer than 1, 2 or627
3 seconds. Furthermore, we extracted speech rate in syllables/second by counting number of syllables628
(approximated by number of vowels in the transcription) and divided by the total speech time.629
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5.7.2 Voice quality measures630

In order to quantify vocal strength and breathiness, we calculated several acoustic measures of voice631
quality. All of the measures below are based on the relative amplitudes of the harmonics of the voice, where632
h1,h2 and h3 refers to the amplitude (in dB) of the first three harmonics, respectively, and a1, a2 and a3633
denote the amplitude of the harmonic closest to the peak of the first, second and third formant, respectively.634
We extracted five metrics: h1h2 (h2 − h1), h1h3, h1h3, h1a1, h1a2 and h1a3. We used REAPER8 to635
extract fundamental frequency from all patient speech and SNACK9 to extract formant trajectories. We636
measured the amplitudes of the harmonics in corresponding STFT spectrograms extracted using librosa10637
in Python. All measures were averaged over all voiced frames in the recording.638

6 PRELIMINARY FINDINGS
In this section, we give some example analyses that illustrate how the digital biomarkers in the previous639
section may be connected to other diagnostic criteria. As our data gathering is far from complete, it is not640
possible to draw reliable conclusions about the diagnostic relevance from the material available thus far.641
Consequently, the analysis and results presented here are highly preliminary, and primarily serve to sketch642
the processes by which the digital biomarkers may be validated against other data available through the643
study. We deliberately omit p-values from the analyses so that readers are not tempted to treat the example644
analysis findings as statistically or scientifically significant.645

At the time of writing 25 of 100 patients have been recorded. Our patients had a mean age of 61.92 years646
in the range 58–70 (standard deviation (4.16). 16 were females (64%) and 9 males (36%). Average length647
of education in years was 14.5 (standard deviation 3.55). From the 25 patients 4 patients were diagnosed648
with Alzheimer’s disease, 7 with mild cognitive impairment and 14 received a diagnosis of subjective649
cognitive impairment, meaning the clinical examination found no clinical signs of impairment. Further650
demographic data is shown in table 4.651

Table 4. A demographic table with age, gender and education level for participants based on diagnostic
group.

Demographic variable Healthy MCI Alzheimer
Diagnostic group 14 (56%) 7 (28%) 4 (16%)

Age 60 (avg) 64.57 (avg) 64 (avg)
3.39 (std) 4.11 (std) 3.9 (std)

Gender 11 Females (78.5%) 1 Female (14%) 4 Females (100%)
3 Males (21.5%) 6 Males (86%) 0 Males (0%)

Education level 15.07 (avg) 14.14 (avg) 10.25 (avg)
3.25 (std) 3.57 (std) 1.5 (std)

Below we report how our extracted behavioural and physiological measures correlate to the following652
five biological biomarkers and clinical diagnostic measures:653

• Diagnosis (0 = Healthy, 1 = MCI, 2 = AD)654

• Moca-MIS655

• Phosphorus tau656

8 https://github.com/google/REAPER
9 http://www.speech.kth.se/snack/
10 https://librosa.org/doc/latest/index.html
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• Ab42657

• Hippocampus Total Volume658

These measures were chosen since they are relatively independent variables within our dataset with a659
strong correlation to AD diagnosis, (Moca-MIS 0.70, p-tau 0,65, Ab42 -0.647, Hippocampus, -0.766).660

Moca Memory Index Score (MoCA-MIS)is a sub-scoring of MOCA that focus on memory tasks. The661
MoCA-MIS is calculated by adding the number of words remembered in free delayed recall, category-cued662
recall, and multiple choice–cued recall multiplied by 3, 2 and 1, respectively, with a score ranging from663
0 to 15 Julayanont et al. (2014). MOCA-MIS was chosen over full scale MOCA since it has a stronger664
correlation to diagnostic then the full MOCA test. Ab42 and p-tau are both linked to AD pathology. The665
scientific debate regarding the relationship and validity of Ab42 and p-tau as diagnostic criteria in AD is666
ongoing. We chose to present Ab42 and p-tau independently although they have good diagnostic validity667
as a single biomarker in our dataset (Ab42/p-tau, -0.7179). Hippocampus was chosen since it is a well668
studied brain region closely tied to AD pathology. In our preliminary analysis of the data collected to date,669
we found many correlations between our extracted metrics and the above measures (please see 8). Below670
we report the most prominent ones. We used Pearson correlations for all our correlation measurements.671
We made a comparison between Pearson and Spearman correlations but no major differences were found672
(mean average difference −0.01± 0.17). In our current situation, where the amount of data is very small,673
we believe that making distributional assumptions (i.e., the Pearson correlation) offers the most appropriate674
bias-variance trade-off, especially since the analysis is only intended to be preliminary.675

6.1 Facial gestures676

We found that the Moca-MIS score correlated negatively with smile mean (-0.62) and smile standard677
deviation (-0.68). For the gaze data captured by the iphone during the interview part, we found a negative678
correlation of horizontal gaze (sideways gaze movements) and diagnosis of -0.54 for horizontal gaze679
absolute mean and -0.5 for horizontal gaze standard deviation. These statistics also correlated positively680
with hippocampus total volume (0.57 and 0.54 respectively).681

6.2 Gaze682

From the data captured by the gaze tracker during interactions with the ipad, we found that the total683
number of fixations correlated with diagnosis (-0.32) and with hippocampus total volume (0.67). Further,684
mean fixation duration correlated with diagnosis (0.45) and hippocampus total volume (-0.78).685

6.3 Language686

Total word count correlated with Moca-MIS (0.36), Ab42 (0.51) hippocampus total volume (0.45), while687
Percentage unique words correlated with Moca-MIS (0.37), Ab42 (0.54) and hippocampus total volume688
(0.44). For the word type metrics, relative occurance of Adjectives was the most relevant feature with a689
correlation with Moca-MIS (0.44), Ab42 (0.61) hippocampus total volume (0.54).690

6.4 Pupil dilation691

The metric pupil maximal absolute rate-of-change generally correlated well with several of the biomarkers,692
but correlations varied across the different sub tasks. Highest correlations was achieved for tasks that693
involved drawing (path, cube and clock tests): for clock drawing test and cube test, correlation with694
diagnosis was -0.47 and -0.56 respectively, Moca-MIS (0.6 and 0.54), p-tau (0.8 and 0.75) and Ab42 (0.9695
and 0.77).696

This is a provisional file, not the final typeset article 22



Jonell, Moëll, Håkansson et al.

6.5 Thermal emissions697

For face temperature measurements captured with the “Patient camera (thermal)” sensor we found that698
temp mean correlated with diagnosis (-0.41) and hippocampus total volume (0.65) while temp rate-of-699
change mean correlated with diagnosis (0.37) and hippocampus total volume (-0.63).700

Figure 6. Cube drawing based on category. From left to right: Healthy, MCI, Alzheimer.

Figure 7. Clock drawing based on category. From left to right: Healthy, MCI, Alzheimer.

6.6 Pen motion and pressure701

Figures 6 and 7 show typical output from two of the drawing tasks for sample subjects of each of the702
diagnosis categories. Looking at the statistics of pen motion and pen pressure, we found that two features703
were particularly interesting: mean drawing gap length correlated with diagnosis (0.62), Moca-MIS (-704
0.61) and Hippocampus total volume (-0.58), and mean pen pressure correlated with p-tau (-0.88) and705
Hippocampus total volume (0.86).706

6.7 Voice707

Two classes of voice related features are included in this analysis: voice source metrics and pause/speech708
rate features. Several of the extracted voice quality metrics (breathiness/vocal strength) showed correlation709
to diagnosis and biomarkers. The most relevant were h1h3 that correlated with diagnosis (0.68) and p-tau710
(0.62) and h1a3 that correlated with diagnosis (0,51) and Moca-MIS (-0.64). Percentage pauses longer711
than 1 second correlated with diagnosis (0.62) and p-tau (0.77) while speech rate correlated with p-tau712
(-0.48) and hippocampus total volume (0.44).713

7 DISCUSSION
Our study describes how to design and implement a multimodal sensor recording system in a clinical714
setting. Furthermore we report our preliminary findings from our sensor data capture. Several of the digital715
biomarkers abstracted from sensor data were highly correlated to both the diagnostic outcome and to716
biomarkers of Alzheimer’s disease, suggesting that a multimodal approach has the potential to complement717
and improve current diagnostic processes. In the remainder of this section, we discuss the results of the718
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Figure 8. Summary of correlations between selected digital biomarker candidate metrics and clinical
assessment measures.

preliminary analysis of the digital biomarkers we studied, and consider the implications of our data capture719
and its findings for dementia detection and treatment.720

7.1 Discussion of analysis findings721

For the purposes of this article, a digital biomarker is useful if it is sensitive to early signs of AD, or722
informative about the current stage of the patient’s disorder, or both. At present, three biomarkers are723
considered to be central for a state-of-the-art evaluation of a possible neurocognitive disorder:724

a) levels of β-amyloid (levels of Ab 42, and/or the ratio between Ab42/Ab40);725
b) levels of tau (both total tau and p-tau); and726
c) cerebral atrophy (including both in specific regions, such as the entorhinal region and hippocampus, and727

general atrophy (including enlarged ventricles).728

A high-quality and detailed examination will include all three biomarkers, and their coexistence, which729
was performed for all patients included in our study (along with other in-depth assessments, as described730
earlier). Due to costs, limited resources, and the invasive nature of these measurements, it is important731
to identify for which patients this extensive examination is needed and for which patients it is not. It is732
obviously advantageous if this can be done in a non-invasive and non-intrusive way. With the assumption733
that the above biomarkers in combination adequately reflect the underlying neuropathology with a high734
level of sensitivity and specificity, digital biomarkers of clinical utility will need to demonstrate a high735
correlation with these existing biomarkers.736

Our data analysis covered both established and novel digital biomarkers. For the former, our findings were737
in line with previous AD research. Pause length and vocal strength metrics h1h3, specifically, correlated738
with AD diagnosis, β amyloid-42 protein, and p-tau. Overall, we also found that voice measures correlated739
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more strongly with clinical assessment metrics than language measures did. Voice features may generally be740
more useful than language measures for early dementia detection, since the semantic features of language741
are more obviously disrupted in the later stages of AD. As our dataset contains only 3 individuals diagnosed742
with AD, our findings are likely more informative for indicating utility in early diagnostics, than for the743
ability of different biomarkers to distinguish AD patients from the two less-affected patient groups we744
considered.745

Another promising digital biomarker we studied that has been previously proposed for AD assessment746
was pupil change. We found that maximum change during cognitively taxing tasks strongly correlated747
with both diagnosis, moca-mis, p-tau, Ab42, and hippocampal volume. The fact that a difference was748
noticeable between non-taxing (cookie test) and taxing (clock, cube, path drawing) tasks shows that this749
might potentially be a useful biomarker in combination with a cognitive test. Unlike voice and language,750
this digital biomarker quantifies physiological responses in the patient that clinicians cannot feasibly detect,751
which increases its potential to complement existing diagnostic procedures.752

We also identified several promising new digital biomarkers. In particular, the mean head temperature753
rate of change correlated strongly with diagnosis, p-tau, Ab42, and hippocampal volume. The pen-drawing754
gap length correlated strongly with diagnosis, moca-mis, Ab42 and hippocampus. Furthermore it was755
highly correlated to vocal pause length measurements (correlation coefficient 0.72). Both pause length756
and pen-drawing gap length are likely related to sympathetic nervous system responses, which differ for757
patients with AD or MCI, compared to those with no objective impairment (Borson et al., 1989). This758
potential utility in early detection can be contrasted against assessments of the drawings themselves, where759
only 53.3% of normal elderly can copy the cube correctly, although most are able to correctly draw the760
clock (Charernboon, 2017). Without pen data, drawing tests in general are thus sensitive detectors of AD761
but not MCI.762

7.2 Tasks and sensors763

When considering different digital biomarkers and their capture, it is worth distinguishing between764
task-dependent and task-independent digital biomarkers. A task-independent digital biomarker is one that765
can be gathered at any (or all) point in the interaction. As such, these are arguably more valuable since they766
are much easier to capture, and do not put constraints on the specifics of the clinical interview. Among767
the different measures in our study, voice and language features can be seen as mostly task-independent768
while quantities extracted from gaze, pupil, and drawing depend on a task. Although task-dependent digital769
biomarkers are more specific and targeted, which might increase accuracy and specificity, that has to be770
weighted against the relative increase in complexity of the associated data capture. A microphone can771
simply record a person’s voice while gaze, pupil and drawing sensors all depend on a well-designed task772
for gathering data that enables accurate diagnosis.773

All things considered, microphones are arguably the most useful among those we considered for dementia774
detection and diagnostics. The relative ease of unobtrusive audio capture and the ability to extract powerful775
features (e.g., pause length, voice source h1a3) makes it a cheap and useful diagnostic tool. Furthermore,776
automatic transcripts of the gathered interview audio can also be used to extract linguistic digital biomarkers777
via text processing, although this may be less relevant for early diagnosis and the digital tools and their778
maturity will differ across languages, whereas the tools used to extract voice measures do not.779

Because of the notable correlation of pupilary data with AD diagnosis, p-tau, Ab42, and hippocampal780
volume, device-mounted eye-trackers capable of accurately measuring pupil size also have shown potential781
for augmenting and improving diagnostic procedures, and there might be promise in building an application782
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that combines pupilary measurements with a cognitive test to build more accurate automatic screening tests783
for dementia. Measures based on drawing and pen pressure have the drawback that they mainly appeared784
useful for diagnosing between healthy control and AD, a result that should be interpreted with caution since785
only three individuals with AD were included in the preliminary analysis. That said, various associated786
digital biomarkers such as gap length show potential and merit more study.787

7.3 Broader implications788

The non-invasive and non-intrusive nature of our data-capture setup brings several benefits. Non-invasive789
procedures generally have lower cost and complexity than invasive ones, and also limit the need for health-790
care personnel since the risk of adverse effects and reactions is much lower. Our non-intrusive data capture791
does not alter the diagnostic interview in a meaningful way. This is helpful both for obtaining ecologically792
valid data and in building trust for data-driven diagnostics among both clinicians and patients. By basing793
the data gathering on affordable and widely-available consumer electronics we hope to demonstrate how to794
the access to sensor-based diagnostic tools for dementia detection and monitoring can be democratised.795

A key strength of using a multimodal approach as described in this article is that the different measure-796
ments can reinforce each others’ predictive power while limiting risks from data loss and inaccuracies797
in the data pipeline. Our in-depth descriptions of our technical setup, data capture procedure, and data798
processing should enable independent replication of our findings using similar sensors. To further simplify799
such replication, we will release the the code used for the data capture and processing as open source.800

An important consideration in the bigger picture is the temporal and neuronal aspect of AD. Although the801
diagnostic criteria is limited to healthy, MCI or AD, beneath the diagnosis lies a progressive disorder with a802
unique pattern of brain functioning for each patient. Assessment of AD is an assessment of the individual’s803
cognitive functions and their deficits. Streamlined diagnostics offer the potential of continuous assessment804
of cognitive functions for individuals in the MCI / AD group. For patients with MCI, deficits are specific805
to certain areas of functioning and continuous assessment enables adaptive care with limited restrictions.806
This is likely to improve the daily life of the patient, which in turn might help the patient not progress to807
AD (through better quality of life and reduced life stressors). Continuous screening as part of behavioural808
interventions might help furthermore develop a virtuous cycle of improved understanding of the disorder,809
through data capture that leads to better targeted interventions.810

If non-invasive measurements can accurately predict underlying brain atrophy in different areas, that also811
opens the door to a future where quick tests can quantify disease progress. This could help in the quest812
to find a cure, since behavioural interventions and targeted pharmaceutical drugs might be used to target813
specific brain atrophies caused by the disorder.814

8 CONCLUSION
We have described a non-invasive and non-intrusive system for collecting synchronous behavioural and815
physiological data in order to facilitate detection of early signs of Alzheimer’s disease, based on a large and816
diverse set of modalities including speech, gaze, pupillometry, facial motion capture, drawing, heart rate817
and thermal data in existing clinical assessments of dementia, and also used the initial data thus gathered for818
a preliminary analysis of selected digital biomarkers available through our approach, and their diagnostic819
value.820

The modalities we capture allow both behavioural and physiological measurements in an objective821
and quantitative manner, and thus complementing the intuitive and qualitative observations made by the822
assessing clinician. The studied modalities may not only quantify the observations and “gut feeling” of823
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the clinician, but can also measure aspects of the patient and interaction that are inaccessible to human824
perception. Our work demonstrates that the proposed approach is feasible with commodity hardware and825
open-source software that we are preparing for public release.826

Our multimodal approach to digital biomarkers has the potential to improve precision in patient selection827
for further and more invasive examinations, thereby saving personnel-time and financial resources for828
society, and avoiding unnecessary delays, suffering, and discomfort for patients. While existing full-fledged829
diagnostic procedures are advanced, they still result in a troubling amount of misdiagnoses (Villemagne830
et al., 2018; Gauthreaux et al., 2020). To the extent that systems and measurements of the kind described831
in this article also can contribute to diagnostic accuracy, that should benefit patients and their families832
in several ways, including reducing exposure to unnecessary medication with negative side-effects and833
avoiding life-quality losses associated with a false positive diagnosis.834

Our analysis finds that single modalities can be used for AD prediction in isolation. Some of these have835
not been reported previously: Our preliminary results indicate that head temperature change and drawing836
gap length are two new digital biomarkers that correlated with AD diagnosis and biological biomarkers.837
Pupillary response has been used for AD prediction but to our knowledge not in the context of cognitively838
demanding tasks. Other preliminary results confirm what is known from previous work, such as the839
correlation of pause length, vocal strength and gaze patterns with a dementia diagnosis. This demonstrates840
that a broad and inclusive data-gathering approach has the potential to discover new digital biomarkers of841
clinical utility, which in turn can serve as further clues to understand underlying mechanisms of AD and842
other neurocognitive disorders. The fact that isolated modalities correlate well with established biomarkers843
and the clinical diagnosis also suggests the potential of combining different modalities and measures for844
further improved diagnostic accuracy. It should be noted that all of the metrics explored in the current study845
are manually crafted features. As is well known from machine learning e.g. in speech and image processing,846
automatically learned features generally outperform hand crafted features when sufficient amounts of data847
are available. Machine learning based feature extraction, prediction and classification methods will be a848
central area of exploration as these data collection efforts continue.849

As it stands, a limitation of the results presented in this paper is the relatively small number of patients,850
which does not allow statistically rigorous conclusions nor discriminating between different types of851
neurocognitive disorders. Our preliminary results therefore mainly pertain to patients with AD, the most852
common dementia diagnosis. Another limitations is that, also for reasons of statistical power, we have only853
focused on measures relevant to atrophy in brain regions known to be especially affected by AD. In future854
studies with more patients, we intend to explore measures and modalities that associate with changes in a855
broader range of brain regions.856
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