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Abstract—In this report, a study of how the magnetic field
provides confinement in a fusion device has been conducted. For
this purpose, a model of the magnetic field at different positions
inside the device has been developed. The magnetic field model
is implemented using numerical software together with a simple
description of the fusion plasma in order to calculate single
charged particle orbits inside the device. The orbits are studied
to examine how they are affected when the input parameters of
the model is varied.

The studies showed that there are two typical types of particle
orbits: the trapped particle orbit and the passing particle orbit.
The orbit type is related to the amount of parallel velocity with
respect to the magnetic field: a large parallel velocity generates a
passing particle orbit whilst a small parallel velocity generates a
trapped particle orbit. The studies also investigates what happens
to the confinement as the parallel velocity reach its limit between
the trapped and passing particle orbit.

The studies also examines the relationship between the level
of confinement and the plasma current. An increasing plasma
current improves particle confinement and a simple model to
describe this relationship is developed and tested.

This report is a bachelor thesis from the department of Fusion
Plasma Physics, School of Electrical Engineering at KTH Royal
Institute of Technology in Stockholm.

I. INTRODUCTION

THE global energy consumption is expected to double,
alternatively fourfold, by the end of 2100 [1]. In order to

supply the world with energy that is sustainable, considering
both the environment and the economy, and to meet the
increasing demand for power, there is an intense program
being conducted in the field of energy research.

Fusion energy, which is the energy released due to the
mass defect when light atomic nuclei are fused together to
form heavier elements, may play a vital role in preventing the
possible future energy crisis.

A wide variety of different fusion experiments is being con-
ducted around the world where different materials and reactor
types are being tested. The largest experiments, that will play
an important role for the future of commercial fusion energy, is
the International Thermonuclear Experimental Reactor (ITER)
with a planned start of operations around 2020 and DEMO, a
demonstration power plant with a planned start of operations
around 2050 [2].

ITER will be constructed as a so called Tokamak, meaning
that magnetic fields will be used to confine the plasma within
a torus and thereby allowing the fusion reaction to take place
without the extreme heat destroying the reactor vessel [3].

In this report, a model of the motion of a single charged
particle confined within a magnetic field with symmetrical
properties similar to those of a Tokamak, is developed, numer-
ically implemented, and tested. The model is approximative

with respect to the generation, and therefore also properties,
of the magnetic field in such a device. The model is also
approximative with respect to the physical construction of the
reactor vessel, meaning that elements such as limiters and
divertors, i.e. devices used for controlling the plasma exhaust
and protecting the vessel walls [4], is not taken into account.

The developed model is used to perform a series of sim-
ulations that studies how the particle orbits depend on input
parameters, such as the initial conditions of the particle and
the driven plasma current.

II. DYNAMICS MODELLING

A. Plasma Dynamics

Fusion reactions require extremely high temperature in
order for the atomic nuclei of the fuel to overcome their
natural repulsive force and fuse. The temperature required for
efficient Deuterium-Tritium reaction is in the excess of 108

K [5]. The high temperature turns the Deuterium-Tritium fuel
mixture into a so called plasma.

Plasma, sometimes referred to as the fourth state of matter,
is a gas where the atoms inside are partially or fully ionized.
A fully ionized plasma, which means that all the atoms in the
plasma are ionized, has characteristics that have to be included
when modeling the plasma itself.

Fusion plasmas are often fully ionized and have exception-
ally high conductivity, typically many times that of an ordinary
good conductor. This property can be explained with the fact
that a plasma has a very low particle density, often orders
of magnitudes smaller than that of a typical good conductor,
and has free electrons with high mobility. The low density
reduces the number of collisions between the particles, and
this low collision rate makes the resistance of the plasma very
small. The high conductivity also shields the plasma from
static electric fields [5].

The low particle density and the low collision frequency
makes the particles within the plasma exhibit so called
collision-less behavior. This means that a plasma particle will
not be significantly affected by other particles in the plasma
during time scales shorter than the collision time described
below [5].

If a fusion plasma is affected by a magnetic field, the
particles will interact with the magnetic field as described
by the Lorentz force. It is therefore sufficient to only study
the motion of individual particles, e.g. a proton, and the
surrounding magnetic field and to disregard its interaction with
other particles in the plasma.
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Fig. 1. A charged particle that enters a perpendicular, homogeneous magnetic
field accelerates in perpendicular relationship to the magnetic field and
velocity [6].

B. Particle Dynamics

A particle with charge q, moving with the speed ~v, through
a magnetic field, ~B, and an electric field, ~E, experience the
Lorentz force described in (1).

~F = q
((
~v × ~B

)
+ ~E

)
(1)

Equation (1) states that the experienced force is the sum of
two forces, one generated by the electric field, and the other
generated by the motion within the magnetic field. Since
fusion plasmas have very high conductivity, it is shielded
from static electric field. And thus the electric field within
the plasma is neglected. Particles will therefore only be
affected by their motion relative to the magnetic field. If the
remaining contribution from the Lorentz force is combined
with Newton’s second law of motion, which describes the
relation between force, mass and acceleration, the differential
equation (2) is generated.

~̇v =
q

m

(
~v × ~B

)
(2)

Equation (2) states that the acceleration of a particle within the
plasma is perpendicular to both the velocity and the magnetic
field. This behaviour is illustrated in figure 1.

From figure 1 and equation (2) a very important fact is
now realised: A particle moving perpendicular to a (locally)
homogeneous magnetic field will start to gyrate around the
field lines and form a circular path. This circular path has
certain properties such as its radius, also called gyro radius
or Larmor radius, and the number of revolutions the particle
makes around the path in one second, also called the gyration
frequency, fg .

In order to motivate the earlier mentioned collision-less
behaviour, the inverse of the gyration frequency, also called
the gyration time, Tg , is studied for a proton

Tg = f−1g =
2πmp

|q|| ~B|
≈ 6.556

| ~B|
· 10−8. (3)

For toroidal fusion devices such as Tokamaks the magnetic
field is often in the order of Teslas, e.g. the TEXTOR Tokamak
with a magnetic field strength of 3 T [7], which means that the
gyration time for protons inside Tokamaks is of the order 10−8

s.
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Figure 3.4 Electron with velocity v and impact parameter b “colliding” with a stationary deuterium
nucleus.

deflect the orbits preventing the particles from getting very close to one another. In other
words, for small relative velocities the cross section for a nuclear collision will be very, very
small. As the relative velocity increases, the Coulomb repulsion has a smaller effect and the
cross section increases. Thus, the cross section is in general a function of relative velocity:
σ = σ (|v2 − v1|). Combining these modifications leads to the following generalization of
the reaction rate:

R12 =
∫

f1(v1) f2(v2) σ (|v2 − v1|) |v2 − v1| dv1dv2

= n1n2〈σv〉. (3.14)

Here, the definition of 〈W 〉 from Eq. (3.13) has been used to obtain the second form of R12.
Lastly, note that for like particle collisions

R11 = 1
2

∫
f1(v1) f1(v2) σ (|v2 − v1|) |v2 − v1| dv1dv2

= 1
2 n2

1〈σv〉. (3.15)

The factor 1/2 appears because when integrating over the two velocities v1, v2 each collision
is counted twice.

Second generalization of the reaction rate

The expression for the reaction rate just presented works well for calculating the fusion
power produced by short-range nuclear collisions in which each collision produces an
identical amount of energy Ef. In other words, the generalization of Eq. (3.10) can be
written as

Sf = Ef n1n2 〈σv〉. (3.16)

The second generalization corresponds to the situation where the interaction force is long
range in nature and the particle quantity of interest itself depends upon the relative velocity
and the geometry of the collision. This is typical of Coulomb collisions, which are very
important in fusion physics.

To understand the issue, consider the Coulomb interaction of an electron (the incident
particle) with a deuterium nucleus (the target) as shown in Fig. 3.4. Note that the geometry of

Fig. 2. An electron subjected to a Coulomb collision with a stationary
Deuterium nucleus [5].

The gyration time is the smallest time scale that is taken
into account in this report. If a particle is studied for only a
small amount of gyrations, the particle’s spatial position can
be known with good accuracy. However, during longer time
scales other effects need to be taken into account, such as
Coulomb collisions and plasma turbulence. In this report, only
the effect of Coulomb collisions are explained and discussed.

1) Coulomb Collisions: If the plasma is modelled as a gas
of ions, each particle will generate an electric field according
to Gauss’s law. Two ions in proximity to each other will
experience the Coulomb force that attracts or repel the ions to
one another. The scalar expression for the magnitude of the
Coulomb force is presented in (4).

|~F | = ke
|q1q2|
r2

(4)

Equation (4) states that the exerted force is large when the
particles are close to one another, and is proportional to
the inverse distance squared. Particles with different sign of
the charge will attract and particles with equal sign of the
charge will repel. The Coulomb force, combined with the fact
that plasma has a low density and high temperature, makes
the particle unlikely to preform classic kinetic collisions, i.e.
collisions can be described by the particles physically bumping
into one another like the balls in a game of pool. Instead, the
particle will be subjected to a more slow type of collision, only
noticeable after a series of cumulated Coulomb collisions. The
low collision rate makes the particle change course on a time
scale that is order of magnitude longer than that of the gyration
time, and its effect is therefore neglected in this report.

C. Particle Guiding Centre

If a particle has started moving inside a magnetic field, its
velocity may be divided into two components: perpendicular
to the magnetic field, v⊥, and parallel to the magnetic field,
v‖. The perpendicular component, as described earlier, forces
the particle to gyrate and the parallel component makes the
particle move along the field lines. The resulting particle
motion will be a helical path following the magnetic field. If
only the centre of this helical path is studied, it is referred
to as the guiding centre path and it is usually parallel to
the magnetic field lines. The guiding centre is the easiest
way to understand how a particle moves with respect to the
surrounding magnetic field. An example of a particle moving



F2. MAGNETIC CONFINED FUSION

1.98

1.99

0

0.02

0.04

0.06

0.08

0.1

0

0.005

0.01

0.015

x [m]
y [m]

3D Plot

z
[m

]

Fig. 3. Motion of a proton within an approximate Tokamak magnetic field.
The helical path is the true path of the particle an the other path is the guiding
centre.

through a magnetic field and its guiding centre is shown in
figure 3.

D. Particle Initial Condition

In order to solve the differential equation described in
section II-B it is essential that a particle is given an initial
velocity for the motion to continue. A stationary charged
particle within a time invariant magnetic field will remain
stationary.

The high temperature of fusion plasmas results in a high
thermal energy, often in the ranges of 10-40 keV for reaction
between Deuterium and Tritium. When the energy, E, is
known, and not large enough to generate relativistic motion,
the magnitude of the particles velocity, |~v|, can be calculated
using the definition provided by classical mechanics, described
in equation (5).

E =
1

2
m|~v|2 ⇔ |~v| =

√
2E

m
(5)

Since equation (5) only computes the magnitude of the veloc-
ity vector, further relationships between the particleäs motion
relative to the magnetic field is required.

Since the toroidal magnetic field in a Tokamak is larger than
the poloidal magnetic field, which will be shown in section IV,
a good first approximation of the magnetic field is a strictly
toroidal field that lies in the (x, y)-plane. It is now possible to
define the pitch angle, ϕp, which is ϕp = π/2− ϕ̄p and ϕ̄p is
the angle between the velocity vector, ~v, and the approximate
magnetic field, ~B 1.

However, the relationship that describes the pitch angle in
(6) is approximative and assumes that the magnetic field can be
written on the form ~B = B~ey and the particle initial position
is at y = 0.  vx =

√
2E
m cosϕp

vy =
√

2E
m sinϕp

(6)

III. GEOMETRIC MODELLING

In order to compute the magnetic field inside a toroidal
fusion device, e.g. a Tokamak, it is important to analyse the

1ϕ̄p is the conventional definition of the pitch angle. In this report the angle
ϕp = π/2 − ϕ̄p is used instead.

Fig. 4. A ring torus [8].

Fig. 5. Representation of toroidal angle (long arrow) and poloidal angle
(short arrow) [9].

geometric properties of the torus, which can be used as an
approximation of the reactor vessel in such devices.

A torus is the shape generated when the centre of a circle
with radius Rmi is rotated around another circle with radius
Rma. Here Rma is refereed to the major radius and Rmi is
referred to as the minor radius. An example of a torus is
displayed in figure 4. If Rma > Rmi the torus is referred to as
a ring torus, and this is the approximate shape of a toroidal
fusion device.

A. Toroidal Coordinate System

The symmetrical properties of the torus makes it possible to
define a coordinate system more suitable for describing points
within the torus rather than using classic Cartesian coordinates.
The toroidal coordinate system is based on two angles and a
distance and is defined as follows:
• The toroidal angle, φ, is defined as the angle that in-

creases or decreases as an object moves through the torus.
It lies in the interval 0 ≤ ϕ < 2π and is represented by
the long arrow in 5.

• The poloidal angle, θ, is defined as the angle that in-
creases or decreases as an object moves along the inner
wall of the torus. It lies within the interval 0 ≤ θ < 2π
and is represented by the short arrow in figure 5.

• The radius, r, is defined as the distance from the point
to the central axis, i.e. the centre on the circular toroidal
cross section in this report.

The relationship between the toroidal coordinate system and
the classic, Cartesian coordinate system is described by equa-
tion system (7) x(φ, θ, r) = (Rma + r cos θ) cosφ

y(φ, θ, r) = (Rma + r cos θ) sinφ
z(φ, θ, r) = r sin θ

(7)

where Rma is the major radius of the torus and treated as a
constant.
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B. Toroidal Unit Vectors

With the toroidal coordinate system defined, it is important
to find the basis vectors of the toroidal coordinate system
expressed as linear combinations of the standard basis. This
is essential, since the differential equation (2) uses the cross
product defined in the standard basis, while the magnetic field,
which will be shown in section IV, is much easier to describe
in the toroidal basis.

Since the toroidal coordinate system can be regarded as a
curvilinear coordinate system relative to the standard basis, the
new basis vectors can be computed according to equation (8)
[10].

~eφ =
∂x(φ, θ, r)

∂φ
êx +

∂y(φ, θ, r)

∂φ
êy +

∂z(φ, θ, r)

∂φ
êz (8)

The vector ~eφ is the vector that has the same direction as
the unit vector êφ. However, it is scaled and is possibly not
a unit vector since its length may be |~eφ| 6= 1 and requires
normalization.

In equation (8) the computation of the new basis vector
direction ~eφ is described. The process is the same for compu-
tation of ~eθ and ~er, though the derivatives are exchanged to
∂
∂θ and ∂

∂r , respectively. Performing the computation generates
the directions of the basis vectors accordingly

~eφ =
(
~ex ~ey ~ez

)
·

−r sinφ cos θ −Rma sinφ
r cosφ cos θ +Rma cosφ

0

 (9)

~eθ =
(
~ex ~ey ~ez

)
·

−r cosφ sin θ
−r sinφ sin θ

r cos θ

 (10)

~er =
(
~ex ~ey ~ez

)
·

cosφ cos θ
sinφ cos θ

sin θ

 . (11)

By normalizing the vectors ~eφ, ~eθ and ~er the corresponding
unit vectors êφ, êθ and êr are obtained.

C. Transformation of Coordinates

Equations (9) - (11) state, that in order to compute the
new basis vectors, it is essential that the toroidal angle φ,
the poloidal angle θ, and the radius r, are known. Since the
particle position will be known in Cartesian coordinates, it is
important to find a transformation from Cartesian coordinates
to toroidal coordinates. This is solved by studying the equation
system (7).

Through substitution, the toroidal angle can be obtained
using (12).

y

x
=

sinφ

cosφ
= tanφ ⇔ φ = arctan

y

x
(12)

However, since the result domain of for the inverse tangent
function in (12) only spans the interval (−π2 ,

π
2 ) while the

toroidal angle is defined in the domain (0, 2π], a numerical
scheme is implemented for four-quadrant inverse tangent [11].

Fig. 6. A magnetic field generated from an electric current described by
Ampere’s law [12].

If the torus is located symmetrically around the z-axis with
toroidal symmetry line in the z = 0 plane, the toroidal radius,
r, can be obtained using Pythagoras theorem described in (13).

r =

√(
Rma −

√
x2 + y2

)2
+ z2 (13)

Finally, the poloidal angle can be obtained using equation (14).

z = r sin θ ⇔ θ = arcsin
z

r
(14)

However, since the result domain of the inverse sine function
only spans the interval [−π2 ,

π
2 ], it is appropriate to rewrite

it as a inverse tangent function, described in equation (15),
and then implement the numerical scheme for four-quadrant
inverse tangent again.

θ = arctan

(
z√

x2 + y2 −Rma

)
(15)

IV. MAGNETIC MODELLING

In order to confine a fusion plasma within a Tokamak, a
helical magnetic field that rotates along the torus is required.
This is achieved by using a set of toroidal field coils and by
driving a plasma current [5].

A. Toroidal Magnetic Field

The toroidal magnetic field is generated by using a series of
coils symmetrically placed around the torus. The total current
that flows around the torus in the poloidal direction is the
current in each coil, IC , multiplied by the number of windings
per coil, NW , and lastly multiplied by the number of coils,
N . Using Ampere’s law, the toroidal magnetic field inside the
torus can be approximated using (16).

∮
C

~B d~l = µ0

∫∫
S

~J d~S = µ0Ienc = µ0NNW IC (16)

Since the magnetic field is constant in the toroidal direction
due to the nature of Ampere’s law as shown in figure 6 the
resulting toroidal magnetic field can be written on the form
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Fig. 7. The relationships between the drift motion, the magnetic field and
the magnetic field gradient. The right drift motion is for a negatively charged
particle and the left a positively charged particle [13].

~B = Btêφ where Bt is calculated according to (17) using the
relationship described in (16).

Bt(R) =
µ0NNW IC

2πR
= Bt(x, y) =

µ0NNW IC

2π
√
x2 + y2

(17)

B. Poloidal Magnetic Field

In order to generate a helical magnetic field, a poloidal
field component perpendicular to the toroidal field is required.
The poloidal magnetic field is generated by driving a plasma
current, IP , through the torus. The plasma current is driven
using a solenoid placed at the centre of the torus, acting as
the primary winding of a transformer, while the secondary
winding is the plasma itself. If the resulting current flow is
regarded as homogeneous inside the torus, the resulting current
density within the torus is described by (18).

~J =
IP
πR2

mi
~eφ (18)

Now, using Ampere’s law, earlier described in (16), the
poloidal magnetic field component at a distance r from the
centre of the toroidal cross section can be approximately
calculated using (19), by assuming the torus is bent only
slightly.

Bp(r) =
µ0πr

2| ~J |
2πr

=
1

2
µ0r| ~J | (19)

The total, resulting magnetic field is now described as a sum
of the toroidal and the poloidal field component in (20).

~B = Bt~eφ +Bp~eθ (20)

C. Magnetic Drift

Because the resulting magnetic field, ~B, is inhomogeneous,
the particles within the plasma will experience a drift motion
caused by the magnetic field gradient. The magnetic field is
also curved, resulting in a curvature drift that is caused by the
centrifugal force. The drift velocity of the particle caused by
these two phenomena is described by equation (21) [5].

~vD =
v2⊥ + 2v2‖

4πfg

~B ×∇| ~B|
| ~B|2

(21)

From equation (21) it is realised that the direction of the
magnetic drift is perpendicular to both the magnetic field
gradient and the magnetic field. This behaviour is described
in figure 7.

Fig. 8. Representation of different magnetic flux surfaces and the magnetic
field associated with each surface in an RFP device [14].

D. Magnetic Flux surfaces

A magnetic flux surface is the surface generated when
following a single magnetic field line inside a Tokamak for
a large set of toridal revolutions. Since the helical magnetic
field is bent around the torus, the poloidal component varies
depending on poloidal angle, θ, and the field line will in
general not end where the field line start after a fully performed
toroidal revolution. Instead it starts to weave a so called
magnetic flux surface.

The number of magnetic flux surfaces is infinite, and all
surfaces will have a slightly different magnetic field associated
with each surface. If the radius r → Rmi, the poloidal field
component will reach its maximum, and the resulting magnetic
field helix will have a relatively small level of inclination.
If the distance r → 0 the poloidal field component will
decrease, and the resulting magnetic field helix will have an
increasingly high level of inclination and finally be infinite,
i.e. the magnetic field will be strictly toroidal. The helical
behaviour on different flux surfaces is depicted in figure 8.

E. The Safety Factor

In order to use a convenient expression for the relationship
between the poloidal field strength and the toroidal field
strength, the safety factor is used. It is defined as the number
of toroidal revolutions the magnetic field requires in order to
perform one poloidal revolution. A strong toroidal field results
in a high safety factor and vice versa. The safety factor can
be approximately defined according to equation (22) [5].

Q =
rBφ
RmaBθ

(22)

The term safety comes from Magnetohydrodynamics, MHD,
where the safety factor is related to plasma stability [5].

V. NUMERIC IMPLEMENTATION

A. The MATLAB R© Environment

The simulation environment, developed to compute the
magnetic field inside the Tokamak and to solve the particle
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TABLE I
EXPERIMENT PARAMETERS BASED ON THE TEXTOR TOKAMAK.

Name Denotation Value
Major radius Rma 1.75 m
Minor radius Rmi 0.47 m

Toroidal field coils N 16
Winding per coil NW ≈ 60

Toroidal coil current IC ≈ 27 kA
Plasma current IP 800 kA

orbit, is described in full detail in appendix A. The environ-
ment mainly consists of the following components:
• One script for invoking the different routines in correct

order and for basic user input.
• Two input functions for loading of physical constants,

e.g. the permeability of vacuum, and machine parameters.
The input functions can be edited in order to change
simulation parameters, e.g. simulation time and driven
plasma current.

• Four functions for computing the magnetic field at a
spatial point in the Tokamak.

• One function for computing the initial velocity of the
particle.

• One function for invoking the numeric differential equa-
tion solver. Can be edited in order to set the solver’s nu-
merical parameters, e.g. relative tolerance and maximum
step length.

• One function for computing of the particle guiding centre
path, given the true particle path returned by the solver.

• One function for generating three dimensional plots and
two dimensional projections of the particle orbits.

As a compliment to the developed environment, a series of
analysing scripts were developed to collect and compare data
from different simulations.

B. Construction Parameters

In order for the model to generate realistic results, the exper-
imental parameters are based on the physical construction of
the TEXTOR Tokamak, located at Forschungszentrum Jülich
in Germany [7]. Experiment parameters used in the model are
presented in table I.

The toroidal coil current, IC , is calculated using the fact
that the toroidal magnetic field on the magnetic axis within
the TEXTOR Tokamak is 3 T [7]. The number of windings
per toroidal field coil is an approximate number due to the
fact that the data was obtained orally from an engineer at the
TEXTOR facility during a visit to Forschungszentrum Jülich,
Germany.

C. Particle Parameters

For the sake of simplicity and easier analysis of the sim-
ulation results, the initial position and the thermal energy of
the plasma particle are fixed during all simulations analysed
in this report. The particle simulated is a proton throughout all
simulations. All initial condition and particle parameters are
presented in table II.

TABLE II
INITIAL CONDITION AND PARTICLE PARAMETERS

Name Denotation Value
Energy E 20 keV
Mass mp ≈ 1.6726 · 10−27 kg

Charge e ≈ 1.6022 · 10−19 C
Toroidal angle φ 0 rad
Poloidal angle θ 0 rad
Poloidal radius r Rmi/2 m

x(φ, θ, r) Rma +Rmi/2 m
y(φ, θ, r) 0 m
z(φ, θ, r) 0 m

Pitch angle ϕp 0.1π ≤ ϕp ≤ 0.5π rad
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Fig. 9. Three dimensional plot of particle path with TEXTOR based
simulation parameters and ϕp = 0.1π.

VI. RESULTS & ANALYSIS

A. TEXTOR based simulation

If all parameters are fixed according to table I and II and the
pitch angle is selected to be ϕp = 0.1π the resulting particle
orbit is presented in figure 9.

The path in figure 9 shows that the particle performs
bounces when the poloidal angle, θ, reaches a certain point,
θ = ±θb. This is better visualized if the particle path is
projected to a two dimensional plot. The projection is achieved
by performing the mapping described in (23).{

R(x, y, z) =
√
x2 + y2

z(x, y, z) = z
(23)

The two dimensional projection with the TEXTOR based
parameters and ϕp = 0.1π is presented in figure 10. If the two
dimensional projection of the particle path displays the trapped
behaviour illustrated in figure 10 the particle is referred to as
trapped since its guiding centre doesn’t perform circular orbits
around the centre of the torus cross section.

The trapped behaviour depicted in figure 10 is caused by
the inhomogeneous magnetic field. The magnetic field gradient
points towards the z-axis and therefore the magnetic pressure,
described in (24), increases as the particle moves towards
smaller R.
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Fig. 10. Two dimensional projection of particle path with TEXTOR based
simulation parameters and ϕp = 0.1π. The dashed lines are a representation
of the different magnetic flux surfaces.

Fig. 11. The resulting force on particles gyrating in a magnetic field of
constant and changing magnetic field density.

Pm =
| ~B|2

2µ0
(24)

The increasing magnetic pressure is related to the increasing
density of the magnetic field, | ~B|. This increasing density is
illustrated by a compression of the magnetic field lines. This
effect causes the particle not only to accelerate towards the
guiding centre, but also in the direction reverse that of the
magnetic field gradient. A graphic representation of this effect
is displayed in figure 11.

If the particle follow the field lines in a magnetic field with
an increasing magnetic field strength, its parallel velocity will
decrease due to the force experienced by the particle. If the
initial parallel velocity is small, the parallel velocity will de-
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Fig. 12. Three dimensional plot of particle path with TEXTOR based
simulation parameters and ϕp = 0.3π.

crease and finally reverse its direction due to the acceleration.
If the particle has a large parallel velocity, it will be able
to overcome the increasing magnetic pressure and continue
its parallel motion after the magnetic compression occurred.
However, its parallel velocity is smaller after traversing this
magnetic threshold.

During the motion inside the Tokamak, the particle will be
affected by the magnetic drift and will move from one flux
surface to another. When the particle changes flux surface,
the magnetic field affecting it changes and makes the particle
following a new field line. It is this difference in flux surface,
that creates the characteristic shape depicted in figure 10.

If the pitch angle is increased, e.g. to ϕp = 0.3π, the ratio
between the parallel and perpendicular velocity of the particle
increase and this makes the particle able to move along the
field line and overcome the magnetic pressure. The resulting
projected particle path is an approximate circle. An example of
such a passing particle orbit is depicted in a three dimensional
plot and a two dimensional projection in figure 12 and 13,
respectively.

1) The Confinement Width: In order to relate the different
particle orbits to the concept of confinement, it is essential
to define a numerical measurement of how well the particle
is confined. A simple, yet intuitive measure, is the maximal
confinement width defined by equation (25).

w = max(r)−min(r) (25)

The confinement width can be seen as the particles tendency to
move across different flux surfaces during a transit- or bounce
period, i.e. during the time to complete one circular revolution
around the magnetic axis (transit period) or one complete
bouncing orbit at the side of the magnetic axis (bounce time).
If the confinement width is large, the particle traverses a large
set of flux surfaces and if w → 0 the particle is fixed to move
along one flux surface. The confinement width is displayed
for a trapped and passing particle orbit in figures 14 and 15
respectively.

In the field of fusion, the level of confinement is the
ability to retain particles within the plasma and prevent them



F2. MAGNETIC CONFINED FUSION

1.2 1.4 1.6 1.8 2 2.2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

2D Projection

R =
√

x2 + y2 [m]

z
[m

]

Fig. 13. Two dimensional projection of particle path with TEXTOR based
simulation parameters and ϕp = 0.3π. The dashed lines are a representation
of the different magnetic flux surfaces.
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Fig. 14. Representation of max(r) (long arrow) and min(r) (short arrow)
for a trapped particle orbit.
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Fig. 15. Representation of max(r) (long arrow) and min(r) (short arrow)
for a passing particle orbit.
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Fig. 16. Confinement width, w, as a function of pitch angle, ϕp, with
TEXTOR based simulation parameters.

from touching the plasma vessel. Particles leaving the plasma
and interacting with the wall makes the plasma lose thermal
energy.

If a particle is confined within the magnetic field, it will
not lose confinement according to the model developed in this
report, since collisions and other transport effects are not taken
into account. However, if a plasma particle is subjected to a
collision, its orbit may shift towards the vessel wall. If the
particle is repeatedly subjected to collisions, its orbit will move
closer to the wall and finally, intersect the vessel wall, leading
to the loss of the plasma particle. The distance of the orbital
shift a particle is subjected to is proportional to its orbital
width, i.e., its confinement width, w.

A large confinement width makes the particle lose con-
finement after a relatively small number of collisions, whilst
particles that experience a small confinement width requires
a larger amount of collisions in order to lose confinement. A
small confinement width is therefore desired.

B. Pitch Angle Relationship

The different particle behaviours in figures 10 and 13
suggests that the particle motion is dependent on the pitch
angle, ϕp, i.e. the initial condition of the particle. At a low
pitch angle the particle becomes trapped and at a large pitch
angle, the particle becomes passing. In order to find the angle
of behaviour transition, ϕT , the confinement width is studied
as function of the pitch angle. The result is shown in figure
16.

Figure 16 shows that a trapped to passing behaviour thresh-
old is present somewhere in the the interval ϕp ≈ 0.24π ≈
0.75 when TEXTOR based simulation parameters are used.
More importantly, at the point of behaviour transition, the
confinement width is approximately halved meaning that the
confinement width of the trapped particle just before the point
of transition is double that of the passing particle confinement
width just after point of transition. This transition behaviour is
easier to interpret if a two dimensional projection of a particle
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Fig. 17. Two dimensional projection of particle orbit using ϕp = 0.245π
and TEXTOR based simulation parameters.
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Fig. 18. Two dimensional projection of particle orbit using ϕp = 0.248π
and TEXTOR based simulation parameters.

orbit with pitch angle close to the angle of transition is studied.
A two dimensional projection using ϕp = 0.245π is shown in
figure 17.

Figure 17 shows, that the particle almost performs a circular
loop before it bounces and traverses a different flux surface in
the backwards direction. If a pitch angle is selected so that it’s
slightly larger, the inner circular loop will be fully completed,
leading to the passing particle behaviour depicted in figure 18.
The ratio between the confinement width in figure 17 and 18
is approximately two.

C. Plasma Current Relationship

Since the plasma current generates the poloidal magnetic
field inside a Tokamak, it may be an important factor concern-
ing plasma confinement. In order to examine the relationship
between the plasma current and single particle confinement,
the confinement width is studied as a function of an increasing
plasma current. A set of two dimensional particle projections
for a trapped and passing particle with a fivefold larger plasma
current is depicted in figure 19 and 20 respectively.

1.2 1.4 1.6 1.8 2 2.2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

2D Projection

R =
√

x2 + y2 [m]

z
[m

]

Fig. 19. Two dimensional projection of particle orbit with ϕp = 0.1π,
IP = 4 MA and otherwise TEXTOR based parameters.
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Fig. 20. Two dimensional projection of particle orbit with ϕp = 0.3π,
IP = 4 MA and otherwise TEXTOR based parameters.

Figure 19 and 20 shows that the trapped particle orbit pro-
jection becomes more compressed, and the particle traverses
a smaller number of flux surfaces. For the passing particle,
the projected orbit asymptotically becomes a circle with its
centre at the magnetic axis. The behaviour shows that the
confinement width decreases as the plasma current increases.
The dependency is depicted in figure 21 and 22.

Figure 21 and 22 shows that the confinement width decrease
as the plasma current increases. In order to set up a model
to describe this relationship, the transit time for a particle is
studied.

The transit time is the time it takes for a particle to complete
one bouncing or passing orbit and can be estimated as

Ttransit ≈
L

v
=

2πQR

v
(26)

where L is the orbit length and v is the guiding centre velocity
during the transit motion and can be approximated as the mean
of the parallel velocity, v ∝ 〈v‖〉. The confinement width is
now considered as a function of the magnetic drift velocity,
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Fig. 21. Relationship between the confinement width, w, and the plasma
current, IP , when ϕ = 0.1π and otherwise TEXTOR based parameters are
used. Dotted line represents fitted analytic inverse function.
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Fig. 22. Relationship between the confinement width, w, and the plasma
current, IP , when ϕ = 0.3π and otherwise TEXTOR based parameters are
used. Dotted lined represents fitted analytic inverse function.

~vD.

w ∝ vDTtransit = vD
L

v
(27)

Using equation (21), i.e. vD ∝ v2(RB)−1, and the earlier
mentioned orbit length, the confinement width can be ex-
pressed as

w ∝ v2

BR

QR

v
∝ Q

B
(28)

or
w ∝ rB

RBθ

1

B
∝ 1

Bθ
. (29)

Finally, since the poloidal magnetic field is proportional to the
plasma current w ∝ I−1P . From this relationship, a simple one
parameter model described in (30) can be used to estimate
how well the simulation data fits the model.

w =
k

IP
⇔ k = IPw (30)

All data points provided in figure 21 and 22 are used to
generate a series of estimates of parameter k. The two series
of k-estimations, one for the trapped particle and one for
the passing particle, are then analysed using relative standard
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Fig. 23. Dependency between the confinement width, w, and the safety factor,
Q, when ϕp = 0.1 and otherwise TEXTOR based simulation parameters are
used.
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Fig. 24. Dependency between the confinement width, w, and the safety factor,
Q, when ϕp = 0.3 and otherwise TEXTOR based simulation parameters are
used.

deviation. The resulting deviations are 1.3 % for the trapped
particle dependency and 6.7 % for the passing particle. This
data leads to the conclusion, that the dependency between
the confinement width and the plasma current are inversely
proportional.

If the relationship between the safety factor, which is recur-
sively dependent on the plasma current, and the confinement
width is studied, the result is a linear dependency as depicted
in figure 23 and 24.

Since the safety factor is defined according to equation
(28), the linear dependency between the safety factor and the
confinement width confirms that the relationship between the
confinement width and the plasma current is indeed an inverse
relationship.

VII. CONCLUSIONS

In this report, an analytic model for computing the orbit
of a single charged particle within a toroidal fusion device
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with properties similar to that of a Tokamak has been de-
veloped. The model has been numerically implemented using
MATLAB R© software and utilized to perform a series of
numerical studies concerning the particle orbit response to
changes in input parameters, i.e. changes in machine configu-
ration and particle initial conditions.

The studies have shown that the particle displays different
motion behaviours due to differences in the initial conditions
and is therefore dependent on the particle motion relative
to the surrounding magnetic field. The studies also showed
that the type of particle behaviour, i.e. trapped or passing, is
independent of the driven plasma current.

At the point of transition between the trapped and passing
particle behaviour, the confinement width is approximately
halved.

A larger plasma current improves the particle confinement
within a Tokamak, and the relationship between the confine-
ment width and the plasma current is sufficiently modelled
using the inverse function, i.e. w ∝ I−1P .
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