Having published an NOMS 2018 paper on reliable distributed control planes, we continued working on this important problem and added an angle of guaranteed performance. Besides filing for a patent application, the work culminated in an IEEE Access article title “Fast Deployment of Reliable Distributed Control Planes with Performance Guarantees“. Full abstract is as follows:
Current trends strongly indicate a transition towards large-scale programmable networks with virtual network functions. In such a setting, deployment of distributed control planes will be vital for guaranteed service availability and performance. Moreover, deployment strategies need to be completed quickly in order to respond flexibly to varying network conditions. We propose an effective optimization approach that automatically decides on the needed number of controllers, their locations, control regions, and traffic routes into a plan which fulfills control flow reliability and routability requirements, including bandwidth and delay bounds. The approach is also fast: the algorithms for bandwidth and delay bounds can reduce the running time at the level of 50x and 500x, respectively, compared to state-of-the-art and direct solvers such as CPLEX. Altogether, our results indicate that computing a deployment plan adhering to predetermined performance requirements over network topologies of various sizes can be produced in seconds and minutes, rather than hours and days. Such fast allocation of resources that guarantees reliable connectivity and service quality is fundamental for elastic and efficient use of network resources.
The work was done at RISE by Shaoteng Liu, Rebecca Steinert, Natalia Vesselinova, and Dejan Kostić.