The purpose of this course is to cover important topics in the theory of statistics in a thorough and general fashion. The course spans over classical inferential techniques including tests of hypothesis, point estimates, and confidence intervals as well as the Bayesian paradigm where one treats all unknown quantities as random variables and constructs a joint probability distribution for all of them. Fundamental concepts are presented from the classical and Bayesian viewpoints in parallel, for better comparison and understanding. Students will practice by studying applications and solving problems related to the theory.
FSF3961 Statistical Inference 15.0 credits

Information per course offering
Course offerings are missing for current or upcoming semesters.
Course syllabus as PDF
Please note: all information from the Course syllabus is available on this page in an accessible format.
Course syllabus FSF3961 (Spring 2019–)Content and learning outcomes
Course contents
Intended learning outcomes
After completing the course students are expected to
explain the classical and Bayesian paradigms and contrast the two
have a good understanding of sufficient statistics and related concepts
outline the foundations of statistical decision theory, both classical and Bayesian
explain the notion of point estimation, the Cramér-Rao lower bound and the Rao-Blackwell theorem
explain the main results and applications of hypothesis testing
have thorough knowledge of computational methods in statistics, such as the EM-algorithm, the Bootstrap, and Markov Chain Monte Carlo
be able to solve problems and discuss research related questions, related to the theory
Literature and preparations
Specific prerequisites
A minimal requirement is a basic course in statistics such as SF1901 and an advanced level course in probability (SF2940), but a graduate course in probability (SF3940) and teaching experience in statistics is recommended.
Literature
Recommended literature:
- Statistical Inference 2nd Ed., G. Casella and R. Berger, Duxbury, 2002.
- Theory of Statistics, M. Schervish, Springer, 1995.
- Information Theory, Inference, and Learning Algorithms, D. Mackay, Cambridge University Press, 2003.
Examination and completion
Grading scale
Examination
- TENM - Oral exam, 7.5 credits, grading scale: P, F
- HEM1 - Home assignments, 7.5 credits, grading scale: P, F
Based on recommendation from KTH’s coordinator for disabilities, the examiner will decide how to adapt an examination for students with documented disability.
The examiner may apply another examination format when re-examining individual students.
If the course is discontinued, students may request to be examined during the following two academic years.
The examination will be done as a combination of homework and oral exam.
Other requirements for final grade
Homework and oral exam.
Examiner
Ethical approach
- All members of a group are responsible for the group's work.
- In any assessment, every student shall honestly disclose any help received and sources used.
- In an oral assessment, every student shall be able to present and answer questions about the entire assignment and solution.