Hoppa till huvudinnehållet
Till KTH:s startsida

FSF3852 Optimal styrteori 7,5 hp

Information per kursomgång

Termin

Information för HT 2024 Start 2024-08-26 programstuderande

Studielokalisering

KTH Campus

Varaktighet
2024-08-26 - 2024-10-27
Perioder
P1 (7,5 hp)
Studietakt

50%

Anmälningskod

51184

Undervisningsform

Normal Dagtid

Undervisningsspråk

Engelska

Kurs-PM
Kurs-PM är inte publicerat
Antal platser

Ingen platsbegränsning

Målgrupp

Endast för doktorander.

Planerade schemamoduler
[object Object]
Del av program
Ingen information tillagd

Kontakt

Examinator
Ingen information tillagd
Kursansvarig
Ingen information tillagd
Lärare
Ingen information tillagd
Kontaktperson

Johan Karlsson (johan.karlsson@math.kth.se)

Kursplan som PDF

Notera: all information från kursplanen visas i tillgängligt format på denna sida.

Kursplan FSF3852 (VT 2019–)
Rubriker med innehåll från kursplan FSF3852 (VT 2019–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursinnehåll

Dynamisk programmering i diskret samt kontinuerlig tid. Hamilton-Jacobi-Bellmans ekvation. Teori för ordinära differentialekvationer samt matrisriccatiekvationer. Pontryagins maximumprincip. Problem med linjära bivillkor och kvadratiskt kriterium. Optimal styrning över oändlig tidshorisont. Modelprediktiv reglering. Tillräckliga villkor för optimalitet. Numeriska metoder för optimala styrproblem.

Lärandemål

Efter att ha avklarat kursen ska studenten kunna:

  • Beskriva hur dynamisk programmering (DynP) fungerar och hur den tillämpas för lösning av diskreta optimeringsproblem.

  • Använda tidskontinuerlig dynamisk programmering och tillhörande Hamilton-Jacobi-Bellman\-ekvation för att lösa allmäna linjärkvadratiska styrproblem.

  • Tillämpa Pontryagins minimumprincip för att lösa optimala styrproblem med begränsningar på styrfunktionen och tillståndstrajektorian.

  • Använda modelprediktiv reglering (MPC) för att lösa optimala styrproblem med hårda tillståndsbivillkor samt förstå skillnanden mellan explicit och implicit MPC.

  • Formulera optimala styrproblem på standardform samt förklara hur olika målfunktioner kvalitatitvt påverkar den optimala prestandan.

  • Förklara principen bakom de vanligaste algoritmerna för numerisk lösning av optimala styrproblem samt använda Matlab för lösning av enkla men realistiska problem.

  • Kombinera kursens metoder och tillämpa dem på mer komplexa problem.

  • Förklara hur dynamisk programmering och Pontryagins minimumprincip relaterar till varandra och vilka för respektive nackdelar de har.

  • Kombinera de matematiska metoder som används i kursen och använda dem för att härleda lösningar till variationer av kursens problemställningar.

Kurslitteratur och förberedelser

Särskild behörighet

Civilingenjörs- eller Masterexamen med minst 30 hp inom matematik (en- och flervariabelanalys, linjär algebra, differentialekvationer och transformer) samt minst 6 hp inom mate\-matisk statistik, 6 hp inom numerisk analys och 6 hp inom optimeringslära.

Utrustning

Ingen information tillagd

Kurslitteratur

Kompendier från institutionen.

Examination och slutförande

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Betygsskala

P, F

Examination

  • TEN1 - Skriftlig tentamen, 7,5 hp, betygsskala: P, F

Examinator beslutar, baserat på rekommendation från KTH:s handläggare av stöd till studenter med funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Projekt, skriftlig tentamen, hemuppgifter.

Övriga krav för slutbetyg

Projekt, skriftlig tentamen.

Frivilliga hemuppgifter ger bonuspoäng till tentamen.

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kursrum i Canvas

Registrerade studenter hittar information för genomförande av kursen i kursrummet i Canvas. En länk till kursrummet finns under fliken Studier i Personliga menyn vid kursstart.

Ges av

Huvudområde

Denna kurs tillhör inget huvudområde.

Utbildningsnivå

Forskarnivå

Påbyggnad

Ingen information tillagd

Kontaktperson

Johan Karlsson (johan.karlsson@math.kth.se)

Forskarkurs

Forskarkurser på SCI/Matematik