Hoppa till huvudinnehållet
Till KTH:s startsida

DD2427 Bildbaserad igenkänning och klassificering 6,0 hp

Information per kursomgång

Kursomgångar saknas för aktuella eller kommande terminer.

Kursplan som PDF

Notera: all information från kursplanen visas i tillgängligt format på denna sida.

Kursplan DD2427 (HT 2016–)
Rubriker med innehåll från kursplan DD2427 (HT 2016–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursinnehåll

  • Representation och särdragsextraktion i digitala bilder
  • principer för igenkänning och klasssificering, bayesianska beslut
  • diskriminantfunktioner, neurala nätverk, support vector machines
  • inlärning, optimering av klassificerare
  • orientering om igenkänning i biologiskt seende
  • exempel på igenkänning: handskrift, ansikten, objekt.

Lärandemål

Efter genomförd kurs ska du kunna:

  • känna till metoder för särdragsextraktion från digitala bilder
  • identifiera grundläggande begrepp, terminologi, teorier, modeller och metoder inom dataklassificering,
  • utveckla och systematiskt testa ett antal grundläggande metoder för klassificering av data,
  • experimentellt utvärdera algoritmer för klassificering och igenkänning av objekt i gråskalebilder,
  • välja lämplig metod för att automatiskt lösa ett givet Klassificeringsproblem,
  • känna till teorier om hjärnans bearbetning av visuell information för klassificering,

för att

  • kunna lösa allmänna problem gällande datarepresentation och Klassificering,
  • kunna implementera, analysera och utvärdera enkla system för automatisk klassificering av bilder,
  • ha en bred kunskapsbas för att kunna läsa och tillgodogöra dig litteratur inom området.

Kurslitteratur och förberedelser

Särskild behörighet

För fristående kursstuderande:

SF1604 Linjär Algebra, SF1625 Envariabelanalys, SF1626 Flervariabelanalys, DD1337 Programmering eller motsvarande kurser.

Utrustning

Ingen information tillagd

Kurslitteratur

Föreläsningsanteckningar, delas ut vid kursstart.

Examination och slutförande

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Betygsskala

A, B, C, D, E, FX, F

Examination

  • INL1 - Inlämningsuppgift, 1,5 hp, betygsskala: P, F
  • LAB1 - Laborationer, 1,5 hp, betygsskala: P, F
  • TEN1 - Tentamen, 3,0 hp, betygsskala: A, B, C, D, E, FX, F

Examinator beslutar, baserat på rekommendation från KTH:s handläggare av stöd till studenter med funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

I denna kurs tillämpas skolans hederskodex, se: http://www.kth.se/csc/student/hederskodex.

Övriga krav för slutbetyg

Laborationsuppgift (LAB1; 1,5 hp)
Inlämningsuppgift (INL1; 1,5 hp)
Tentamen (TEN1; 3 hp )

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kursrum i Canvas

Registrerade studenter hittar information för genomförande av kursen i kursrummet i Canvas. En länk till kursrummet finns under fliken Studier i Personliga menyn vid kursstart.

Ges av

Huvudområde

Datalogi och datateknik

Utbildningsnivå

Avancerad nivå

Påbyggnad

Diskuteras med examinator.

Kontaktperson

Josephine Sullivan, tel: 790 6136, e-post: sullivan@kth.se