Hoppa till huvudinnehållet
Till KTH:s startsida

DD2380 Artificiell intelligens 6,0 hp

Kursen ger en bred översikt över problem och metoder som studeras inom området artificiell intelligens.

Information per kursomgång

Välj termin och kursomgång för att se aktuell information och mer om kursen, såsom kursplan, studieperiod och anmälningsinformation.

Termin

Kursplan som PDF

Notera: all information från kursplanen visas i tillgängligt format på denna sida.

Kursplan DD2380 (HT 2024–)
Rubriker med innehåll från kursplan DD2380 (HT 2024–) är markerade med en asterisk ( )

Innehåll och lärandemål

Kursinnehåll

Följande områden behandlas inom ramen för kursen: problemlösning med sökalgoritmer, heuristik och spel, kunskapsrepresentationer (logik), planering,  representation av osäker och resonerande kunskap (Bayesianska nätverk, HMM), beslutsteori och utility theory, språkbehandling (NLP).

Lärandemål

Efter godkänd kurs ska studenten kunna

  1. tillämpa olika principer inom Artificiell Intelligens (AI)
  2. välja lämpliga verktyg och implementera effektiva lösningar på problem inom AI
  3. integrera verktyg för att designa datorprogram som visar olika egenskaper som förväntas av ett intelligent system
  4. presentera, analysera, och berättiga en egen lösning på ett AI-problem
  5. reflektera över och diskutera gällande sociala och etiska aspekter av AI

i syfte att kunna

  • dra nytta av metoder inom artificiell intelligens vid analys, design och implementation av datorprogram
  • bidra till design av ett intelligent system i såväl akademiska som industriella tillämpningar.

Kurslitteratur och förberedelser

Särskild behörighet

  • Kunskaper i linjär algebra, 7,5 hp, motsvarande slutförd kurs SF1624/SF1672.
  • Kunskaper i envariabelanalys, 7,5 hp, motsvarande slutförd kurs SF1625/SF1673.
  • Kunskaper i sannolikhetslära och statistik, 6 hp, motsvarande slutförd kurs SF1910-SF1924/SF1935.
  • Kunskaper och färdigheter i programmering, 6 hp, motsvarande slutförd kurs DD1337/DD1310-DD1319/DD1321/DD1331/ DD100N/ID1018.
  • Kunskaper i algoritmer och datastrukturer, 6 hp, motsvarande slutförd kurs DD1338/DD1320-DD1327/DD2325/ID1020/ID1021.

Aktivt deltagande i kursomgång vars slutexamination ännu inte är Ladokrapporterad jämställs med slutförd kurs. 

Den som är registrerad anses vara aktivt deltagande.

Med slutexamination avses både ordinarie examination och det första omexaminationstillfället.

Utrustning

Ingen information tillagd

Kurslitteratur

Ingen information tillagd

Examination och slutförande

När kurs inte längre ges har student möjlighet att examineras under ytterligare två läsår.

Betygsskala

A, B, C, D, E, FX, F

Examination

  • LAB2 - Laborationer, 4,0 hp, betygsskala: A, B, C, D, E, FX, F
  • RAP1 - Rapport, 0,5 hp, betygsskala: P, F
  • TENQ - Quiz, 1,5 hp, betygsskala: P, F

Examinator beslutar, baserat på rekommendation från KTH:s handläggare av stöd till studenter med funktionsnedsättning, om eventuell anpassad examination för studenter med dokumenterad, varaktig funktionsnedsättning.

Examinator får medge annan examinationsform vid omexamination av enstaka studenter.

Möjlighet till komplettering

Ingen information tillagd

Möjlighet till plussning

Ingen information tillagd

Examinator

Etiskt förhållningssätt

  • Vid grupparbete har alla i gruppen ansvar för gruppens arbete.
  • Vid examination ska varje student ärligt redovisa hjälp som erhållits och källor som använts.
  • Vid muntlig examination ska varje student kunna redogöra för hela uppgiften och hela lösningen.

Ytterligare information

Kursrum i Canvas

Registrerade studenter hittar information för genomförande av kursen i kursrummet i Canvas. En länk till kursrummet finns under fliken Studier i Personliga menyn vid kursstart.

Ges av

Huvudområde

Datalogi och datateknik

Utbildningsnivå

Avancerad nivå

Påbyggnad

DD2431 Maskininlärning
DD2434 Mackininlärning, avancerad kurs
DD2424 Djupinlärning i data science
DD2432 Artificiella neuronnät och andra lärande system
DD2423 Bildbehandling och datorseende
DD2429 Datorfotografi
DD2425 Robotik och autonoma system
EL2320 Tillämpad estimering

Kontaktperson

Iolanda Dos Santos Carvalho Leite (iolanda@kth.se)

Övergångsbestämmelser

Det tidigare provmomentet LAB1 har ersatts av LAB2 och TEN2 har ersatts av TENQ.

Övrig information

I denna kurs tillämpas EECS hederskodex, se:
http://www.kth.se/eecs/utbildning/hederskodex