Formal Methods for Lab-Based MOOCs: Cyber-Physical Systems and Beyond

Sanjit A. Seshia

UC Berkeley

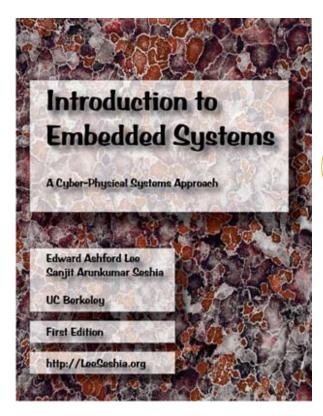
Joint work with:

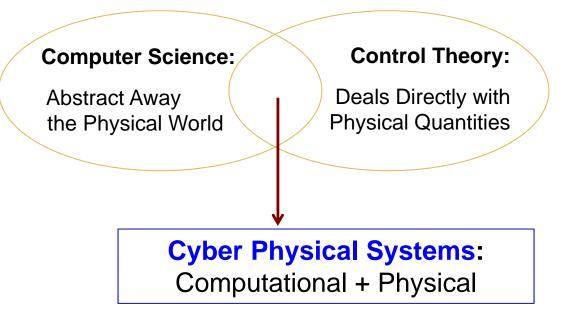
Edward A. Lee, Jeff. C. Jensen, Alexandre Donzé, Garvit Juniwal, Andy Chang

UC Berkeley & NI

CPSGrader.org

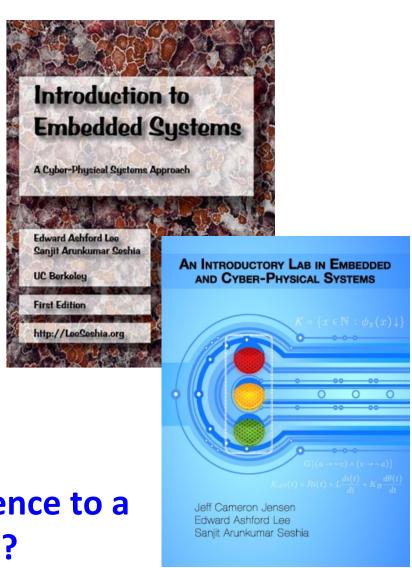
CPS-Ed 2014 November 4, 2014


Massive Open Online Courses (MOOCs)

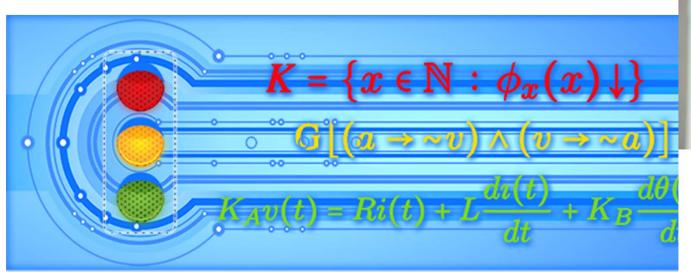

Courses from universities world-wide available to any one with an Internet connection

EECS 149: Introduction to Embedded Systems UC Berkeley

This course introduces the modeling, design and analysis of computational systems that interact with physical processes.


http://leeseshia.org/

On-campus course gets somewhat diverse enrollment (EE/CS, ME, CE, ...)


The Core Learning Experience: Exercises and Labs

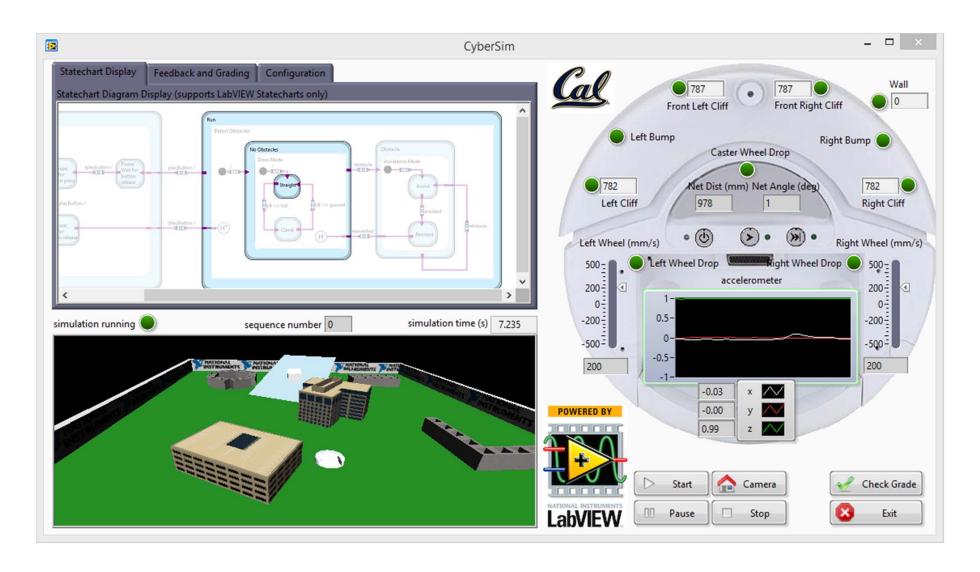
- Textbook Exercises:
 - High-level modeling with FSMs,
 ODEs, temporal logic, etc.
 - Programming in various languages (C, LabVIEW, etc.)
 - Algorithm design and analysis (scheduling, verification, etc.)
- Laboratory (6 weeks)
- Capstone design project (12 weeks)
 - ➤ How to extend this experience to a MOOC version of EECS 149?

EECS149.1x: Cyber-Physical Systems

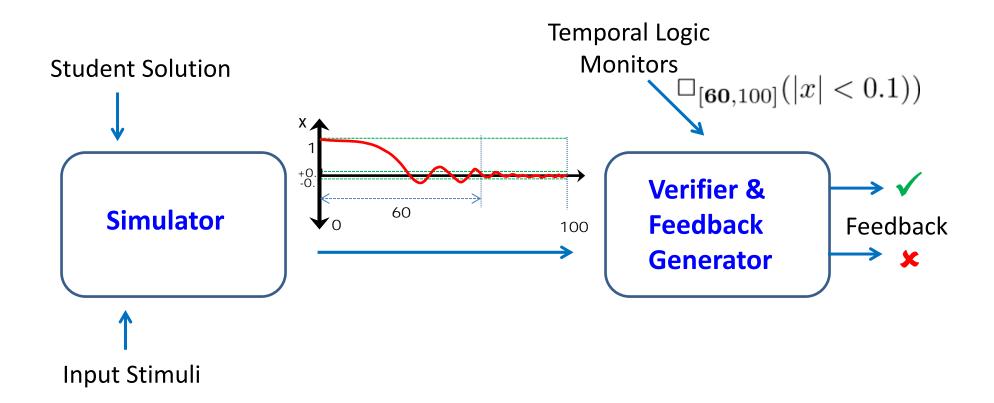
- MOOC offering on edX: May 6 to June 24, 2014
- Berkeley-NI collaboration
- Virtual lab software for CPS: CyberSim
- First course to employ formal methods in auto-grader: CPSGrader

Roadmap for Rest of this Talk

- CyberSim + CPSGrader
 - NI Robotics Simulator + UC Berkeley Auto-Grader
 - Demo
- The EECS149.1x Experience
 - Statistics, Survey Results, Feedback


Future Directions

On-Campus Lab Assignment: The "Hill-Climbing" Robot



Goal: Online Virtual Lab with learning experience "comparable" to On-Campus Real Lab

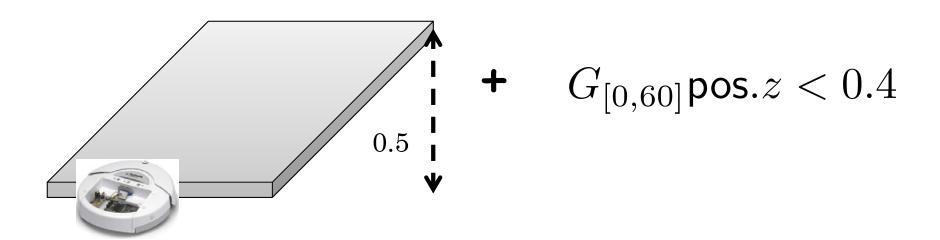
Virtual Lab Assignment (Demo)

Components

CyberSim

CPSGrader

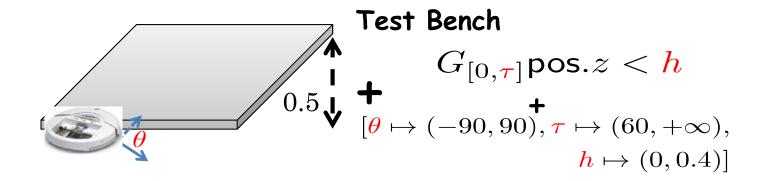
CPSGrader: Auto-Grading and Feedback Generation [Juniwal, Donze, Jensen, Seshia, EMSOFT 2014]


Auto-grading = verification + debugging

- Employ Simulation-based (run-time) verification
 - get simulation trace
 - monitor signal temporal logic properties
 - localize faulty behavior

Fault Detection

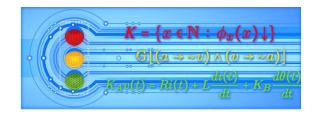
- Environment: Arena composed of obstacles and hills
- Monitor: Signal Temporal Logic formula that captures presence of fault in a trace
- *Test*: Environment + Monitor


A test is "triggered" by a controller if the fault property holds on the simulation trace in the environment.

Technical Challenge

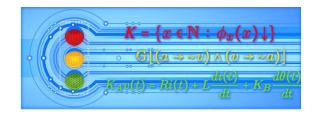
- Grading should be robust to variations in environment and student solutions.
 - Obstacle placement; hill incline & height
 - Different wheel speeds; strategies.
- Introduce parameters in environment and STL formula.
- Creating temporal logic test benches = solving a parameter synthesis problem.

Synthesis of Test Benches


- Need to synthesize subset of parameter space that ONLY matches faulty solutions
 - Tedious to do manually!
- Coming up with reference faulty/good solutions is easier
- Goal: Synthesize fault subspace from reference controllers

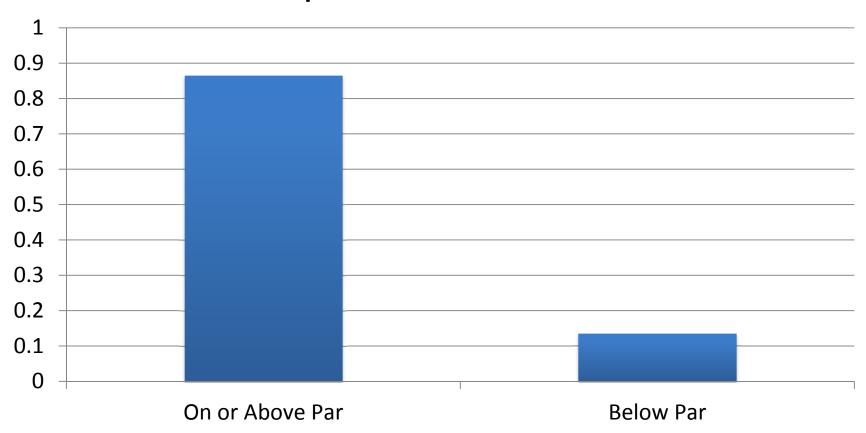
Roadmap for Rest of this Talk

- CyberSim + CPSGrader
 - NI Robotics Simulator + UC Berkeley Auto-Grader
 - Demo
- The EECS149.1x Experience
 - Statistics, Survey Results, Feedback

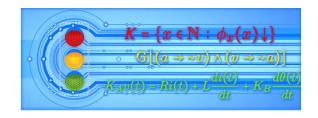

Future Directions

EECS149.1x: Basic Statistics

- 6-7 weeks
- 49 lectures, 10 hours 50 minutes of video
- 6 weekly lab assignments
 - 1 LabVIEW and Dev Tools tutorial
 - 1 Memory Architectures "lab"
 - 4 Virtual Lab exercises:
 - Week 1: Navigation, programming in C
 - Week 2: Hill climb, programming in C
 - Week 3: Navigation, programming in LabVIEW
 - Week 4: Hill climb, programming in LabVIEW
 - Hardware track optional


EECS149.1x: Basic Statistics

- 6-7 weeks
- 49 lectures, 10 hours 50 minutes of video
- 6 weekly lab assignments
- Peak Enrollment: 8767
- Largest number submitting any lab: 2213
- Number scoring more than 0: 1543
- Number who passed: 342 (4% of peak enrollment)


Student Survey

Comparison with other MOOCs

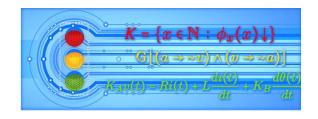
54% of students had taken 3 or more (other) MOOCs already

EECS149.1x: LabVIEW Stats

(About 200-300 survey respondents)

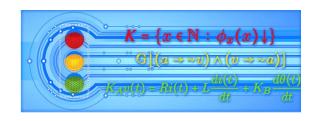
- Prior Experience: 59% NEW to LabVIEW
- LabVIEW vs. C for the labs:
 - LabVIEW was superior: 26%
 - LabVIEW was equally capable: 56%
 - LabVIEW was inferior: 18%
- Repeating lab in LabVIEW after doing it in C:
 - 73% felt it is a good thing
 - teaches different concepts and skills

Hardware Track: When deploying to the *real robot*, did you modify your solution from the simulator?


>90%

of controllers that passed the Virtual Lab auto-grader worked on the real robot with no or minor modifications

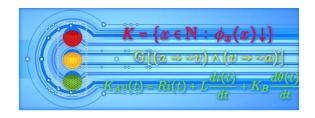
Students Reporting Auto-grader Feedback as Useful:


86%

EECS149.1x: Lecture Modules

- 1. Introduction to CPS
- 2. Memory Architectures
- 3. Interrupts
- 4. Modeling Continuous Dynamics
- 5. Sensors and Actuators
- 6. Modeling Discrete Dynamics
- 7. Extended and Hybrid Automata
- 8. Composition of State Machines
- 9. Hierarchical State Machines
- 10. Specification & Temporal Logic

Survey on Lecture Modules



- 1. Introduction to CPS
- 2. Memory Architectures (1)
- 3. Interrupts 2
- 4. Modeling Continuous Dynamics
- 5. Sensors and Actuators 1
- 6. Modeling Discrete Dynamics
- 7. Extended and Hybrid Automata
- 8. Composition of State Machines (3)
- 9. Hierarchical State Machines (2)
- 10. Specification & Temporal Logic 3

Top Theory Topic

1 Top Lab-Relevant Topic

Conclusion

- EECS149.1x: A first step towards enabling Lab-based MOOCs
 - Useful for growing enrollments on campus too!
- CPSGrader architected to be reusable for other courses
 - Circuits
 - Robotics
 - Mechatronics
 - **–** ...
- Formal Methods can offer much to Education in Science and Engineering
 - Virtual Science & Engineering Labs with built-in Auto-Grading can broaden participation

Future Directions

- Partial and Extra Credit
 - Quantitative semantics of Signal Temporal Logic
 - Quantitative satisfaction of temporal formulas
- Frequency-Domain Properties
 - Time Frequency Logic
- Online/Incremental Algos for Run-Time Verification
- Machine Learning for New "Unknown" Faults

• ...